# Extended likelihood method - In particle physics, we care about the signal, background yields $\hat{S}, \hat{B}$ in one measurement. - The signal, background events follow different PDFs denoting as $\mathcal{P}_{S}(X_{i}; \theta), \mathcal{P}_{B}(X_{i}; \theta)$: > where $X_{i}$ is the random variable we collect in an experiment, $\theta$ can be some known truth parameter or unkown parameter to be measured. \begin{equation} \begin{aligned} \mathcal{L}(X_{i}; \hat{S}, \hat{B}, \theta) &= \frac{(\hat{S}+ \hat{B})^Ne^{-(\hat{S}+\hat{B})}}{N!} \prod_{i=0}^{N} \{ \frac{\hat{S}}{N} \mathcal{P}_{S}(X_{i}; \theta) + \frac{\hat{B}}{N} \mathcal{P}_{B} (X_{i}; \theta)\} \\ &= \frac{e^{-(\hat{S}+\hat{B})}}{N!} \prod_{i=0}^{N} \{ \hat{S} \mathcal{P}_{S}(X_{i}; \theta) + \hat{B} \mathcal{P}_{B} (X_{i}; \theta)\} \end{aligned} \tag{1} \end{equation} - Question: This likelihood is not like the classic MLE exercise, which is by multiplying the probabilities of all random variables (w/ presumed PDFs). A poisson probability is introduced to estimate how likely we get certain $\hat{S}, \hat{B}$ in the measurement. This is a technique used frequently in our field. Is it valid to say that for each random variable, we are not sure which PDF it follows, so we do a conditional probability calculation: $\frac{\hat{S}}{N} \mathcal{P}_{S}(X_{i}; \theta) + \frac{\hat{B}}{N} \mathcal{P}_{B} (X_{i}; \theta)$? > Then why we need the poisson term (fraction) - Analogy: 假設有 A, B 兩班學生,身高(RV)分佈不同,今天兩班一起測量身高,想要去估計 A, B 班各有多少學生 # Combined datasets to measure some parameters In practice, we want to measure the **truth happen rate** (we call it branching fraction **$BF$**) of signal event, and we relate the $BF$ and $S$ by given equation ($BF = \frac{S}{\epsilon \times N(B\bar{B})}$), so we'd would like to rewrite the Eq(1) into: \begin{equation} \begin{aligned} \mathcal{L}(X_{i}; \hat{BF}, \hat{B}, \theta) \end{aligned} \tag{2} \end{equation} And we consider independent datasets, with different PDFs {$\mathcal{P}_{1,S}, \mathcal{P}_{1,B}$}, {$\mathcal{P}_{2,S}, \mathcal{P}_{2,B}$}. The two datasets share a same parameter $BF$. \begin{equation} \begin{aligned} BF = \frac{S_{1}}{\epsilon_{1} \times N_{1}(B\bar{B})} = \frac{S_{2}}{\epsilon_{2} \times N_{2}(B\bar{B})} \end{aligned} \end{equation} Can we construct a joint likelihood $\mathcal{L}_{tot}(X_{i}) = \mathcal{L}_{1}(X_{i})\mathcal{L}_{2}(X_{i})$ (is this formulation valid)? And using MLE to estimate the $BF$?