# Math [TOC] ## Arithmetic Series - $a_1 = a_1$ - $a_2 = a_1 + d$ - $a_3 = a_1 + 2d$ - $\dots$ - $a_{n-1} = a_1 + (n-2)d$ - $a_n = a_1 + (n-1)d$ $$ \begin{split} S_n &= a_1 + a_2 + a_3 + \dots + a_n \\ &= \frac{(a_1 + a_n) n}{2} \\ &= \frac{(2a_1 + (n-1)d) n}{2} \end{split} $$ :::info Example 1: $$ 1+2+3+\dots+99 = \; ? $$ :::spoiler Solution $$ \begin{split} 1+2+3+\dots+99 &= \frac{(1 + 99) \times 99}{2} \\ &= 4950 \end{split} $$ :::success ::: :::info Exercise 1: $$ 1+3+5+\dots + 99 = \; ? $$ :::spoiler Solution $$ 99 = 1 + (n-1) \times 2 $$ $$ 98 = (n-1) \times 2 $$ $$ n = 50 $$ $$ S_n = \frac{(1 + 99) \times 50}{2} = 2500 $$ ::: :::info Exercise 2: $$ 1+4+7+10+\dots + 100 = 1717 $$ ::: :::info Exercise 3: Calculate the sum of the first 77 even numbers. :::spoiler Solution Method 1: $$ a_1 = 2, \; d = 2, \; n = 77 $$ $$ a_{77} = 154 $$ $$ \begin{split} S &= 2 + 4 + 6 + \dots + 154 \\ &= \frac{(2 + 154) \times 77}{2} \end{split} $$ Method 2: $$ S = \frac{(2 + 2 + (77 -1) \times 2) \times 77}{2} $$ Method 3: $$ \begin{split} S &= 2 + 4 + 6 + \dots + 154 \\ &= 2 (1 + 2 + 3 + \dots + 77) \\ &= 2 \times \frac{(1 + 77) \times 77}{2} \end{split} $$ ::: :::info Exercise 4 :::spoiler Solution $$ 20 + 17 + 14 + \dots + (-40) = \; ? $$ $$ d = -3 $$ $$ -40 = 20 + (n-1) \times (-3) $$ $$ -60 = -3 (n-1), \; n-1 = 20 $$ $$ n = 19 $$ :::success ::: ## Polynomial $$ (x + a)^n = x^n + C^n_1 x^{n-1}a + C^n_2 x^{n-2} a^2 + \dots + C^n_{n-1} x a^{n-1} + a^n $$ ## Calculus $$ f(x) = \begin{cases} \frac{x - 1}{x^2 - 1} &,\quad x \neq 1 \\ 2 &,\quad x = 1 \end{cases} $$ $$ \bar f(x) = \frac 1 {x+1} $$ $$ x = 1: f(1) = 2 ,\quad f'(1) = \frac 1 2 $$ $$ \lim_{x \rightarrow 1} f(x) = \frac 1 2 $$ $$ \lim_{x \rightarrow \infty} f(x) = 0 $$ Derivative of $f(x)$: $$ f'(x_1) = \lim_{x_2 \rightarrow x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} $$ $$ f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} $$ --- $$ f(x) = x^2 \qquad f'(x) = 2x $$ $$ f'(x) = \lim_{h \rightarrow 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \rightarrow 0}\frac{2hx + h^2}{h} = \lim_{h \rightarrow 0} (2x + h) = 2x $$ --- $$ f(x) = x^n $$ $$ \begin{split} f'(x) &= \lim_{h \rightarrow 0} \frac{(x+h)^n - x^n}{h} \\ &= \lim_{h \rightarrow 0} \frac{(x^n + C^n_1x^{n-1}h + C^n_2 x^{n-2} h^2 + \dots) - x^n}{h} \\ &= \lim_{h \rightarrow 0} \frac{C^n_1x^{n-1}h + C^n_2 x^{n-2} h^2 + \dots}{h} \\ &= \lim_{h \rightarrow 0} (C^n_1 x^{n-1} + C^n_2 x^{n-2} h + \dots)\\ &= C^n_1 x^{n-1} = n x^{n-1} \end{split} $$ --- $$ f(x) = c $$ $$ f'(x) = \lim_{h \rightarrow 0} \frac{c - c}{h} = \lim_{h \rightarrow 0} \frac{0}{h} = 0 $$ --- $$ f(x) = x^3 - 5x^2 $$ $$ f'(x) = 3 x^2 - 10 x $$ $$ f''(x) = 6x - 10 $$ $$ f'''(x) = 6 $$ $$ f''''(x) = 0 $$ --- $$ f(x) = x^4 - 3 x^3 + 10x -9 \qquad f'(x) = 4 x^3 - 9 x^2 + 10 $$ $$ g(x) = \frac 1 2 x^6 + 7 x^5 - \frac 2 9 x^3 \qquad g'(x) = 3 x^5 + 35 x^4 - \frac 2 3 x^2 $$ --- $$ f(x) = \frac 1 {x^2} = x^{-2} $$ $$ f'(x) = -2 x^{-3} = - \frac 2 {x^3} $$ --- $$ f(x) = \ln(x) \qquad f'(x) = \frac 1 x $$ --- $$ y = x^2 + 2x + 5 $$ $$ y' = 2x + 2 $$ Let $y' = 0$: $$ 2x + 2 = 0 \qquad x = -1 $$ When $x = -1$: $$ y = 1 - 2 + 5 = 4 $$ Minimum point: (-1, 4) $$ y = x^2 +2x +5 = (x^2 + 2x + 1) - 1 + 5 = (x + 1)^2 + 4 $$ --- $$ f(x) = \sin(x) $$ $$ \begin{split} f'(x) &= \lim_{h \rightarrow 0} \frac{\sin(x+h) - \sin(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\sin(x) \cos(h) - \sin(x)}{h} + \lim_{h \rightarrow 0} \frac{\cos(x) \sin(h)}{h}\\ &= \lim_{h \rightarrow 0} \frac{\sin(x) \cos(h) - \sin(x)}{h} + \cos(x) \\ &= \sin(x) \lim_{h \rightarrow 0} \frac{\cos(h) - 1}{h} + \cos(x) \\ &= \cos(x) \end{split} $$ $$ \frac{d}{dx} \sin x = \cos x $$ $$ \frac{d}{dx} \cos x = -\sin x $$ The product rule: $$ \frac{d}{dx} \Big( f(x) \cdot g(x) \Big) = f(x) \cdot \frac{d}{dx} g(x) + g(x) \frac{d}{dx} f(x) $$ --- $$ f(x) = x^2 \sin x $$ $$ \begin{split} f'(x) &= x^2 (\sin x)' + \sin x (x^2)' \\ &= x^2 \cos x + 2x \sin x \end{split} $$ --- $$ f(x) = (x^2 + 3x)(2x^3 - 5x^2 + 3) $$ --- The chain rule: $$ \Big(f(g(x))\Big)' = f'(g(x)) \cdot g'(x) $$ --- $$ u = 3x^2 + 4x - 5 $$ $$ f(x) = (3x^2 + 4x - 5)^2 = u^2 $$ $$ \begin{split} f'(x) &= 2u \cdot (6x + 4) \\ &= 2(3x^2 + 4x - 5) \cdot (6x + 4) \end{split} $$ $$ f(x) = \sin(x^2) $$ --- $$ f(x) = (x^2 + 1)^5 $$ $$ \begin{split} f'(x) &= 5(x^2 + 1)^4 \cdot 2x \\ &= 10x (x^2 + 1)^4 \end{split} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up