# Physics ## Motion ### Acceleration $$ a = \frac{v_f - v_i}{\Delta t} $$ - $v_f$: final velocity - $v_i$: initial velocity Unit: $m/s^2 = (m/s) /s$ ### Motion Formulas $$ \begin{cases} v = v_0 + at \\ d = v_0 t + \frac{1}{2} a t^2 \\ v^2 = v_0^2 + 2ad \end{cases} $$ - $v$: velocity - $v_0$: initial velocity ## Newton's Laws Newton's second law: $$ \vec{F} = m \vec{a} $$ ## Spring Hooke's law: $$ \vec{F}_s = -k \vec{x} $$ Energy: $$ E_s = \frac{1}{2} k x^2 $$ ## Work / Energy Work: $$ W = \vec{F} \cdot \vec{S} $$ Kinetic energy: $$ E_K = \frac{1}{2} m v^2 $$ Potential energy: $$ U_g = mgh \qquad U_s = \frac{1}{2} k x^2 $$ **Conservation of energy** holds when there are only **conservative forces**. $$ \Delta U + \Delta K = 0 $$ $$ \Delta E = \Delta U + \Delta K = W_{\text{non-conservative}} $$ ## Momentum $$ \vec{p} = m \vec{v} $$ $$ \vec{F} = m \vec{a} = m \frac{\Delta \vec{v}}{\Delta t} = \frac{\Delta \vec{p}}{\Delta t} $$ $$ F = \frac{\Delta p}{\Delta t} $$ Initial: $p_{\text{total}} = m v_1 + m \cdot 0 = m v_1$ After collision: $p_{\text{total}} = m v_1 = m v_2$ $$ \implies v_1 = v_2 $$ --- Initial: $p_{\text{total}} = m_1 v_1 + m_2 v_2$ After collision: $p_{\text{total}} = m_1 v_1' + m_2 v_2'$ $$ m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' $$ --- $$ 2 \cdot 1 + 0 = -2v_1' + 4 v_2' $$ $$ -v_1' + 2 v_2' = 1 $$ Initial energy: $\frac{1}{2} m_1 v_1^2 = 1$ After collision: $\frac{1}{2} m_1 v_1'^2 + \frac{1}{2} m_2 v_2'^2$ $$ \frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 v_1'^2 + \frac{1}{2} m_2 v_2'^2 $$ $$ v_1'^2 + 2 v_2'^2 = 1 $$ $$ \begin{cases} -v_1' + 2 v_2' = 1 \\ v_1'^2 + 2 v_2'^2 = 1 \end{cases} $$ $$ v_1' = 2v_2' - 1 $$ $$ (2v_2' - 1)^2 + 2 v_2'^2 = 1 $$ $$ 6v_2'^2 - 4 v_2' = 0 $$ $$ v_2'(3v_2' - 2) = 0 $$ $$ v_2' = 0, \frac{2}{3} \qquad v_1' = -1, \frac{1}{3} $$ Impulse: $$ I = F \cdot \Delta t = \Delta p $$ ## Circular Motion - $T$ : period (s) - $f$ : frequency (circle/s) - $\omega$ : angular velocity (rad/s) - $\alpha$ : angular acceleration - $a_c$ : centripetal acceleration (m/s$^2$) - $F_c$ : centripetal force (N) $$ \omega = \frac{\Delta \theta}{\Delta t} = \frac{v}{r} \qquad v = r \omega $$ $$ T = \frac{2 \pi}{\omega} $$ $$ a_c = \frac{v^2}{r} = r \omega^2 = \frac{4 \pi^2 r}{T^2} $$ $$ F_c = \frac{mv^2}{r} = mr \omega^2 = \frac{4 \pi^2 mr}{T^2} $$ - $L$ : angular momentum - $I$ : moment of inertia, angular mass - $\tau$ : torque (力矩) $$ L = rmv = r^2 m \omega = I \omega $$ $$ I = \frac{L}{\omega} = \frac{rmv}{\omega} = \frac{rmv}{\frac{v}{r}} = mr^2 $$ $$ \vec{\tau} = \vec{F} \times \vec{r} $$ Newton's second law for rotation: $$ \tau = I \alpha = I \frac{\Delta \omega}{\Delta t} = \frac{\Delta L}{\Delta t} $$ ## Simple Harmonic Motion  $$ y = A \cos(\omega t) = A \cos(2 \pi ft) $$ $$ F = kA = \frac{4 \pi^2 mr}{T^2} $$ $$ T^2 = \frac{4 \pi^2 m r}{kA} = \frac{4 \pi^2 m}{k} $$ $$ T = 2\pi \sqrt{\frac{m}{k}} $$ $$ f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} $$ Pendulum: $$ T = 2\pi \sqrt{\frac{L}{g}} $$ ## Electrostatics $$ F = \frac{kQq}{r^2} $$ $$ E = \frac{F}{q} = \frac{kQ}{r^2} $$ ## Electric Current $$ I = \frac{q}{t} $$ Ohm's law: $$ V = IR $$ $$ R = \frac{\rho L}{A} $$ Parallel resistance: $$ \frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots $$ ## Misc. $$ d = v_0 t + \frac{1}{2} a t^2 $$ $$ 56 = 8 t + \frac{1}{2} \cdot 3 \cdot t^2 $$ $$ 112 = 16 t + 3 t^2 $$ $$ 3 t^2 + 16 t - 112 = 0 $$ --- $$ 6 = -v_1 + 2 v_2 $$ $$ 18 = \frac{1}{2} v_1^2 + v_2^2 $$ $$ v_1 = 2 v_2 -6 $$ $$ 18 = \frac{1}{2} (2 v_2 -6)^2 + v_2^2 $$ $$ 18 = (2 v_2^2 - 12 v_2 + 18) + v_2^2 $$ $$ \implies v_2 = 4, v_1 = 2 $$ $$ 12 = -v_1 + 3 v_2 $$ $$ 72 = \frac{1}{2} v_1^2 + \frac{3}{2} v_2^2 $$ $$ 100 = 50 v_1, v_1 = 2 $$ $$ 10 = \frac{1}{2} \cdot 2.5 \cdot t^2 $$ $$ t^2 = 8, \; t = 2\sqrt{2} $$ $$ a = 2.5 $$ $$ v = at = 2.5 \cdot 2\sqrt{2} $$ $$ 2 = \frac{1}{2} 0.01 v^2 $$ $$ v^2 = 400 $$ $$ \frac{9 \cdot 10^9 \cdot 5 \cdot 10^{-6} \cdot 6 \cdot 10^{-6}}{400} = \frac{270}{400} \cdot 10^{-3} = \frac{27}{4} \cdot 10^{-4} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up