GenEpi / 0-Abstract === ###### tags: `基因體/三級分析/GenEpi` ###### tags: `基因體`, `SNP`, `dbSNP`, `Variant`, `GenEpi`, `ML`, `生物資訊` <br> ## [#034] [Abstract(摘要)](https://www.biorxiv.org/content/10.1101/421719v6) > Genome-wide association studies (GWAS) provide a powerful means to identify associations between genetic variants and phenotypes. 全基因組關聯研究(GWAS)提供了一種有效的方法,來識別遺傳變異和表現型之間的關聯。 > However, GWAS techniques for detecting epistasis, the interactions between genetic variants associated with phenotypes, are still limited. 然而,用於檢測上位作用的 GWAS 技術,即與表現型相關的遺傳變異之間之相互作用,仍然是有限的。 > We believe that developing an efficient and effective GWAS method to detect epistasis will be a key for discovering sophisticated pathogenesis, which is especially important for complex diseases such as Alzheimer’s disease (AD). 我們相信,開發一種「有效率」且「有效果」的 GWAS 方法來檢測上位作用,將是發現複雜發病機制的關鍵。這對複雜疾病,如阿茲海默症(AD),尤其重要。 > In this regard, this study presents GenEpi, a computational package to uncover epistasis associated with phenotypes by the proposed machine learning approach. 在這方面,本研究提出了 GenEpi,這是一種藉由所提出的機器學習方法,來揭示與表現型相關的上位作用之計算套件。 > GenEpi identifies both within-gene and cross-gene epistasis through a two-stage modeling workflow. GenEpi 經由兩階段的模型工作流程,來識別「基因內」和「跨基因」的上位作用。 > In both stages, GenEpi adopts two-element combinatorial encoding when producing features and constructs the prediction models by L1-regularized regression with stability selection. 在兩個階段中,GenEpi 在產生特徵時採用雙元素組合編碼,並藉由具有穩定性選擇的 L1 正規化回歸來建構預測模型。 > The simulated data showed that GenEpi outperforms other widely-used methods on detecting ground-truth epistasis. 模擬數據顯示,GenEpi 在檢測「有[標準答案 (真實案例) ](https://www.itread01.com/content/1546727252.html)的上位作用」優於其他廣泛使用的方法。 > As real data is concerned, this study uses AD as an example to reveal the capability of GenEpi in finding disease-related variants and variant interactions that show both biological meanings and predictive power. 就真實數據而言,本研究以 AD 為例,揭示 GenEpi 在尋找疾病相關變異和變異相互作用方面的能力,同時顯示生物學意義和預測能力。 > Availability: GenEpi is an open-source python package and available free of charge only for non-commercial users. 可用性:GenEpi 是一個開源 python 套件,僅供非商業用戶免費使用。 > The package can be downloaded from https://github.com/Chester75321/GenEpi, and has also been published on The Python Package Index. 該套件可以從 https://github.com/Chester75321/GenEpi 下載,也已發佈在 Python Package Index 上。