工具 / statsmodels === ###### tags: `ML / 時間序列` ###### tags: `ML`, `時間序列`, `statsmodels` <br> [TOC] <br> <hr> <br> ## [Autoregressions](https://www.statsmodels.org/stable/examples/notebooks/generated/autoregressions.html) > 資料來源:[Time series forecasting with FEDOT. Guide](https://github.com/ITMO-NSS-team/fedot-examples/blob/main/notebooks/latest/3_intro_ts_forecasting.ipynb) <br> <hr> <br> ## VAR > 資料來源:[A Multivariate Time Series Guide to Forecasting and Modeling (with Python codes)](https://www.analyticsvidhya.com/blog/2018/09/multivariate-time-series-guide-forecasting-modeling-python-codes/) > #multivariate(多變量), Vector Auto Regression ### 測試集:每月搭機旅客人數 (AutoML) ```python= y_pred_var = [504.38935402, 503.78798811, 503.19576126, 502.61253456, 502.03817125, 501.47253662, 500.91549802, 500.36692482, 499.82668837, 499.29466198, 498.77072087, 498.25474217, 497.74660487, 497.24618981, 496.75337964, 496.26805877, 495.7901134 , 495.31943143, 494.85590249, 494.39941787, 493.94987051, 493.50715499, 493.07116748, 492.64180574, 492.21896907, 491.80255832, 491.39247582, 490.9886254 ] ``` ![](https://i.imgur.com/kjxYIYd.png) <br> ## Holt-Winter ### ExponentialSmoothing - doc: [statsmodels.tsa.holtwinters.ExponentialSmoothing](https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html) - [api](https://docs.w3cub.com/statsmodels/generated/statsmodels.tsa.holtwinters.exponentialsmoothing) ### Holt - doc: [statsmodels.tsa.holtwinters.Holt](https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.Holt.html) - [api](https://docs.w3cub.com/statsmodels/generated/statsmodels.tsa.holtwinters.holt) <br> ## Trend and seasonality - ### [An Introduction to Time Series Forecasting with Python](https://www.researchgate.net/publication/324889271_An_Introduction_to_Time_Series_Forecasting_with_Python) - [pycon-ua-2018/look-into-the-data.ipynb](https://github.com/gakhov/pycon-ua-2018/blob/master/look-into-the-data.ipynb)