# Sequences by Tim ## Week 1 **Definition 1.** $\{x_n\}$ is constant if $x_n=x_{n+1}$ $\forall n\in {\mathbb N}$. **Example 1.** $\{17\}$ is constant since $x_n=17=x_{n+1}$ $\forall n\in {\mathbb N}$. **Counterdefinition 1.** $\{x_n\}$ is not constant if $\exists m\in{\mathbb N}$ such that $x_m\neq x_{m+1}$ **Example 1'.** $\{(-1)^n\}$ is not constant since $$-1=x_1\neq x_2=1.$$ **Definition 2.** $\{x_n\}$ is bounded above if $\exists K\in{\mathbb R}$ such that $x_n\leq K$ $~\forall n\in {\mathbb N}$. **Example 2.** Prove that $\{(-1)^n\}$ is bounded above. *Proof* Let $K=1$ Then $\forall n\in{\mathbb N},~~(-1)^n \leq 1$ $\blacksquare$ **Counterdefinition 2.** $\{x_n\}$ is not bounded above if, $\forall K\in {\mathbb R}$, $\exists m\in {\mathbb N}$ such that $x_m>K$ **Example 2'.** $\{2n\}$ is not bounded above. *Proof* Given any $K\in{\mathbb R}$, let $m=\lceil \lvert K \rvert \rceil + 1$ Then $x_m=2m=2\lceil \lvert K \rvert \rceil+2>K$ $\blacksquare$ [Link to Desmos Example 2'](https://www.desmos.com/calculator/noeav5nixt) **Definition 3.** $\{x_n\}$ is bounded below if $\exists K\in{\mathbb R}$ such that $x_n\geq K$ $~\forall n\in {\mathbb N}$. **Example 3.** $\{2\}$ is bounded below. *Proof* let $K=0$ Then $\forall n\in{\mathbb N}$, $x_n=2 \geq 0$ $\blacksquare$ **Counterdefinition 3.** $\{x_n\}$ is not bounded below if, $\forall K\in {\mathbb R}$, $~\exists m\in {\mathbb N}$ such that $x_m<K$ **Example 3'.** $\{-n\}$ is not bounded below. *Proof* Given any $K\in{\mathbb R}$, let $m=\lceil \lvert K \rvert \rceil +1$ Then $$x_m=-m=-\lceil \lvert K \rvert \rceil -1<K$$ $\blacksquare$ [Link to Desmos for Example 3'](https://www.desmos.com/calculator/5dsr7ln4u7) **Definition 4.** $\{x_n\}$ is bounded if $\exists K\in{\mathbb R}$ such that $\lvert x_n \rvert$ $\leq K$ $~\forall n\in {\mathbb N}$. **Example 4.** $\{\sin n\}$ is bounded. *Proof* Let $K=1$ Since $-1\leq \sin a\ \leq 1 ~~ \forall a\in {\mathbb R}$, it follows that $\forall n\in{\mathbb N}$, $\lvert x_n \rvert = \lvert \sin n\ \rvert$ $\leq K$ $\blacksquare$ **Counterdefinition 4.** $\{x_n\}$ is not bounded if, $\forall K\in {\mathbb R}$, $\exists m\in {\mathbb N}$ such that $\lvert x_m \rvert$ $> K$. *The following lemma will be used in Example 4'* **Lemma 1.** $2^a>a ~~\forall a\in {\mathbb N}$ *Proof* $2^1 = 2 > 1$, so the statement is true for $a=1$ Now suppose $2^k > k$ for some $k\in {\mathbb N}$ Then $$2^{k+1}=2 \cdot 2^k = 2^k + 2^k>k+k \geq k+1$$ So by the principle of induction, this proof is complete. $\blacksquare$ **Example 4'.** $\{(-2)^n\},$ is not bounded. *Proof* Given any $K\in{\mathbb R}$, let $m=\lceil \lvert K \rvert \rceil +1$ Then since $2^a>a ~~\forall a\in {\mathbb N}$, and from the definition above,$~m\in {\mathbb N}$ , it follows that $$\lvert x_m \rvert = \lvert (-2)^m \rvert = ~ \lvert(-2)^{\lceil \lvert K \rvert \rceil +1} \rvert = 2^{\lceil \lvert K \rvert \rceil +1}> K$$ $\blacksquare$ [Link to Desmos for Example 4'](https://www.desmos.com/calculator/2yl7z5r9bi) $$ $$ $$ $$ $$ $$ ## **Week 2** --- **1. Prove that if $\{x_n\}$ is infinitely large then $\{x_n\}$ is unbounded** *Proof* Suppose $\{x_n\}$ is infinitely large but not unbounded. Then $\{x_n\}$ is bounded. This means $\exists K\in{\mathbb R}$ such that $\lvert x_n \rvert$ $\leq K$ $~\forall n\in {\mathbb N}$. But since $\{x_n\}$ is infinitely large, there must be some $m\in {\mathbb N}$. such that $\lvert x_m \rvert>K$. Thus we have a contradiction, and the proof is complete. $\blacksquare$ **2. Prove that $\{(-1)^nn\}$ is infinitely large** [Link to Desmos Visual for #2](https://www.desmos.com/calculator/r6dg6pj7bh) *Proof* Given any $K\in{\mathbb R}$, let $m=\lceil \lvert K \rvert \rceil +1$. Then $$\lvert x_m \rvert=\lvert(\lceil \lvert K \rvert \rceil+1)(-1)^{\lceil \lvert K \rvert \rceil+1}\rvert=\lceil \lvert K \rvert \rceil +1>K$$ Now consider any $n\in{\mathbb N}$ such that $n\geq m$ Then it follows that $$\lvert x_n \rvert=\lvert (-1)^nn \rvert = n \geq m>K$$ $\therefore \{(-1)^nn\}$ is infinitely large.$~~\blacksquare$ **3. Counter the definition of infinitely large.** $\{x_n\}$ is not infinitely large if $\exists K\in{\mathbb R}$ such that $~\forall n\in {\mathbb N}, ~~\exists n^*>n$ where $\lvert x_{n^*} \rvert \leq K$ *Note that "infinitely large" is not equivalent to "unbounded". See link below.* *This link shows a sequence that is unbounded but NOT infinitely large. Examples of $n^*$ are shown in orange. You can choose the n up to 100.* [Desmos Link for Week 2 #3](https://www.desmos.com/calculator/mwca9hocam) **4. Prove that $$x_n=\begin{cases} n,&\text{if $n$ is even}\\ 0,& \text{if $n$ is odd}\end{cases}$$is not infinitely large, but unbounded** *Proof* Part 1: $\{x_n\}$ is unbounded $\{x_n\}$ is unbounded if, $\forall K\in {\mathbb R}$, $\exists m\in {\mathbb N}$ such that $\lvert x_m \rvert$ $> K$. Given any $K$, let $m=2\lceil \lvert K \rvert \rceil +2$ Since $m$ is even, $\lvert x_m \rvert=\lvert m \rvert=2\lceil \lvert K \rvert \rceil +2 > K$ Therefore $\{x_n\}$ must be unbounded. [Desmos Link to week 2 #4 Part 1](https://www.desmos.com/calculator/ghd8sf6rjw) Part 2: $\{x_n\}$ is not infinitely large. $\{x_n\}$ is not infinitely large if $\exists K\in{\mathbb R}$ such that $~\forall n\in {\mathbb N}, ~~\exists n^*>n$ where $\lvert x_{n^*} \rvert \leq K$ Let $K=1$ Given any $n$, let $n^*=2n+1$ Since $n^*$ is odd, $\lvert x_{n^*} \rvert=0 \leq 1$ $\therefore \{x_n\}$ is not infinitely large $\blacksquare$ [Desmos Link to week 2 #4 Part 2](https://www.desmos.com/calculator/bp604c4i9o) **5. Counter the definition of $\lim x_n=L$.** $\lim x_n \neq L$ if $\exists~ \varepsilon > 0$ such that, $\forall n\in {\mathbb N}$, $\exists ~ n^* \geq n$ where $\lvert x_{n^*} - L \rvert \geq \varepsilon$ **6. Prove that $\lim(-1)^n\neq 0$** *Proof* Suppose $\lim(-1)^n = 0$ Then $\forall \varepsilon > 0, ~ \exists n^*$ such that $\forall n \geq n^*, ~\lvert x_n - 0 \rvert < \varepsilon$ Let $\varepsilon = \frac{1}{2}$ Since $\forall n \in {\mathbb N}, ~ \lvert x_n - 0 \rvert = \lvert x_n \rvert = 1 \geq \varepsilon$ It follows there is no $n^*$ that satisfies this condition, and this is a contradiction. $\therefore \lim(-1)^n\neq 0 ~~~\blacksquare$ **7. Prove that $\lim(-1)^n\neq 1$** Suppose $\lim(-1)^n = 1$ Then $\forall \varepsilon > 0, ~ \exists n^*$ such that $\forall n \geq n^*, ~\lvert x_n - 1 \rvert < \varepsilon$ Let $\varepsilon = \frac{1}{2}$ Choose any $n^*$ such that $\lvert x_{n^*} - 1 \rvert < \frac{1}{2}$ Then $x_{n^*}=(-1)^{n^*}=1$ and it follows that $x_{n^*+1}=(-1)^{n^*+1}=(-1)(-1)^{n^*}=(-1)(1)=-1$ but then $\lvert x_{n^*+1} - 1 \rvert = \lvert -1 - 1 \rvert = \lvert -2 \rvert = 2 \geq \varepsilon$ This is a contradiction. $\therefore \lim(-1)^n\neq 1 ~~~\blacksquare$ $$ $$ --- ## **Week 3** --- **1. Negate and justify how we negate the following statement** **$\forall \epsilon>0, ~~~~\epsilon$ is a bad number.** **In particular, why we do not change the inequality $\epsilon>0$.** An equivalent way to say the original statement is: "if $\epsilon > 0$ then $\epsilon$ is a bad number". To logically negate the statement "if A then B", we need "A and not B". So we need a case where the hypothesis ($\epsilon > 0$) is true, but the conclusion ($\epsilon$ is a bad number) is false. The negation of this statement is: $\exists ~ \epsilon > 0$ such that $\epsilon$ is not a bad number The inequality does not change because if I found an $\epsilon \leq 0$ that is not a "bad number", it does not make the original statement false. The original statement only makes a claim about the "badness" of $\epsilon$ for $\epsilon > 0$. **2. Let $A\subset \mathbb R$. State the definition of $m=\inf~A.$** $m=\inf~A$ if the following two conditions are true: $~~~~~$*i.*$~~~\forall a \in A,~ a \geq m$ $~~~~~$*ii.*$~~\forall \varepsilon > 0, ~\exists a^* \in A$ such that $m \leq a^* < m + \varepsilon$ **3. Prove that $\sup\{1-\frac{1}{n}\}=1$** [Link to Desmos Week3 #3](https://www.desmos.com/calculator/r2vjigt8h0) Since $\forall n \in {\mathbb N},~\frac{1}{n}>0$, it follows that $\forall n,~ 1-\frac{1}{n}\ < 1$. So 1 is an upper bound of $\{1-\frac{1}{n}\}$. Further, given any $\varepsilon > 0$, let $n^*=\lceil \frac{2}{\varepsilon} \rceil$. Then $$1-\frac{1}{\lceil\frac{2}{\varepsilon}\rceil} \geq 1-\frac{1}{(\frac{2}{\varepsilon})}=1-\frac{\varepsilon}{2} > 1 - \varepsilon$$ $\therefore \forall \varepsilon > 0, ~\exists n^* \in {\mathbb N}$ such that $1-\frac{1}{n^*} > 1-\varepsilon$ So, $\sup\{1-\frac{1}{n}\}=1~~\blacksquare$ **4. Prove that $\inf\{1-\frac{1}{n}\}=0$** [Link to Desmos Week3 #4](https://www.desmos.com/calculator/hsq1dzumkc) Since $\frac{1}{n} \leq 1 ~~\forall n \in {\mathbb N}$, it follows that $1-\frac{1}{n} \geq 0$. So 0 is a lower bound of $\{1-\frac{1}{n}\}$. Further, given any $\varepsilon > 0$, let $n^*=1$. Then $$1-\frac{1}{n^*}=1-\frac{1}{1}=0<\varepsilon$$ $\therefore \forall \varepsilon > 0, ~\exists n^* \in {\mathbb N}$ such that $1-\frac{1}{n^*} < 0 + \varepsilon$ So $\inf\{1-\frac{1}{n}\}=0~~\blacksquare$ **5. Prove that $\inf\{(0,1)\}=0$** [Link to Desmos Week3 #5](https://www.desmos.com/calculator/fcrtfa39dt) $\forall x \in \{(0,1)\}, ~~ x \geq 0$ So 0 is a lower bound of $\{(0,1)\}$ Also, given any $\varepsilon > 0, ~~\exists ~ x^* = \min\{\frac{1}{2}, \frac{\varepsilon}{2}\}$ such that $$0 \leq \min\{\frac{1}{2}, \frac{\varepsilon}{2}\}<0+\varepsilon$$ $\blacksquare$ **6. Let $A=\{0\}\cup \{(1,2)\}$. Prove that $\inf A=0$.** [Link to Desmos for Week3 #6](https://www.desmos.com/calculator/nwiz7x3vb8) $\forall a \in A, ~~ a \geq 0$ So 0 is a lower bound of A. Also, given any $\varepsilon > 0, ~~\exists ~ a^* = 0$ such that $$0 \leq a^* < 0+\varepsilon$$ $\blacksquare$ **7. Ex. 2.1.3 and 2.1.4 in our text. You must prove your answers, not just provide them.** ***Exercise 2.1.3*** *Is the sequence $\{\frac{(-1)^n}{2n}\}$ convergent? If so, what is the limit?* [Link to Desmos for Exercise 2.1.3](https://www.desmos.com/calculator/0t4fdmexap) Yes, $\{\frac{(-1)^n}{2n}\}$ is convergent, and the limit is 0. *Proof* Given any $\varepsilon > 0$, let $n^* = \lceil \frac{1}{2\varepsilon} \rceil +1$. Then $\forall n \geq n^*$, $$\lvert\frac{(-1)^n}{2n}-0 \rvert=\frac{1^n}{2n}=\frac{1}{2n} \leq \frac{1}{2n^*}=\frac{1}{2\lceil\frac{1}{2\varepsilon}\rceil+1} \leq \frac{1}{2(\frac{1}{2\varepsilon})+1}=\frac{1}{\frac{1}{\varepsilon} +1}=\frac{\varepsilon}{\varepsilon + 1}<\varepsilon$$ $\blacksquare$ ***Exercise 2.1.4*** *Is the sequence $\{2^{-n}\}$ convergent? If so, what is the limit?* [Link to Desmos for Exercise 2.1.4](https://www.desmos.com/calculator/sy0ftlrpht) Yes, $\{2^{-n}\}$ is convergent, and the limit is 0. *Proof* Given any $\varepsilon > 0$, let $n^* =\max\{1, \lceil \log_{2}(\frac{1}{\varepsilon}) \rceil +1\}$ Then for $\varepsilon ~\geq 1, n^* = 1$ and $\forall n \geq n^*$, $$\rvert 2^{-n}-0 \lvert = 2^{-n} = \frac{1}{2^n} \leq \frac{1}{2^1} < \varepsilon$$ Further, $\forall \varepsilon$, $0<\varepsilon < 1,$ and $\forall n \geq n^*$ $$\lvert 2^{-n}-0 \rvert=2^{-n}=\frac{1}{2^n} \leq \frac{1}{2^{\lceil \log_2(\frac{1}{\varepsilon})\rceil+1}}<\frac{1}{(\frac{1}{\varepsilon})}=\varepsilon$$ $\blacksquare$ 8. Redo Week 1 HW if you want to (for half of the remaining points) --- ## **Week 4** --- **1. Prove that any subsequence of an infinitely large sequence is infinitely large.** *Proof* Let $\{a_n\}$ be a sequence that is infinitely large. Then $\forall K \in {\mathbb R}$, $~\exists n^*$ such that $\forall n \geq n^*$, $$|a_n| > K$$ Let $\{a_{n_i}\}$ be a subsequence of $\{a_n\}$. Pick $n_{i^*} \geq n^*$ Then it follows that, $\forall n_i \geq n_{i^*} \geq n^*$, $$\lvert a_{n_i} \rvert > K$$ $\blacksquare$ **2. p. 50 Ex. 2.1.7** **Let $\{x_n\}$ be a sequence. a) Show that $\lim{x_n}=0$ (that is, the limit exists and is zero) if and only if $\lim{|x_n|}=0$** *Proof* Suppose $\lim{x_n}=0$ Then by definition of a limit, we have: $\forall \varepsilon > 0, ~\exists ~ n^*$ such that $\forall n \geq n^*$, $$\lvert x_n - 0 \rvert < \varepsilon $$ It follows that, $\forall n \geq n^*$, $$\vert \lvert x_n \rvert - 0 \rvert = \lvert x_n - 0 \rvert < \varepsilon $$ So $\lim{|x_n|}=0$. $$ $$ Conversely, suppose $\lim{|x_n|}=0$ Then by definition of a limit, we have: $\forall \varepsilon > 0, ~\exists ~ m^*$ such that $\forall n \geq m^*$, $$\lvert \lvert x_n \rvert - 0 \rvert < \varepsilon$$ It follows that, $\forall n \geq m^*$, $$\lvert x_n - 0 \rvert = \lvert \lvert x_n \rvert - 0 \rvert < \varepsilon$$ So $\lim{x_n}=0 ~~~\blacksquare$ **b) Find an example such that $\{|x_n|\}$ converges and $\{x_n\}$ diverges** Consider $\{x_n\} = \{(-1)^n\}$. $\forall n \in {\mathbb N}$, $$|x_n|=|(-1)^n|=1$$ So $\{|x_n|\}$ converges, and $\lim{|x_n|}=1$. (Note that this is not a formal proof, as the exercise only asks for an example.) Further, we have shown in class and in previous HW problems that $\{(-1)^n\}$ diverges. **3. p. 50 Ex. 2.1.10 Show that the sequence $\{x_n\}=\{\frac{n+1}{n}\}$ is monotone, bounded, and use Theorem 2.1.10 to find the limit.** [Desmos Link for Week 4 #3](https://www.desmos.com/calculator/peuzqn1cfy) *$i.$ $\{x_n\}=\{\frac{n+1}{n}\}$ is monotone.* *Proof* $\forall n \in {\mathbb N}$, $$x_n = \frac{n+1}{n} = \frac{n}{n}+\frac{1}{n} = 1 + \frac{1}{n} > 1 + \frac{1}{n+1} = \frac{(n+1)+1}{n+1} = x_{n+1}$$ So $\{x_n\}$ is monotone decreasing. $\blacksquare$ $$ $$ *ii. $\{x_n\}$ is bounded* *Proof* Choose $K=2$ (from our definition of bounded). Then $\forall n \in {\mathbb N}$, $$|x_n| = |\frac{n+1}{n}| \leq 2 = K$$ $\blacksquare$ iii. In order to use Theorem 2.1.10, I first need to show that $\inf{x_n}=1$ *Proof* Given any $\varepsilon > 0$, let $n^* = \lceil \frac{1}{\varepsilon} \rceil + 1$ Then it follows that $$x_{n^*} = \frac{(\lceil \frac{1}{\varepsilon} \rceil+1)+1}{\lceil \frac{1}{\varepsilon} \rceil+1} = 1 + \frac{1}{\lceil \frac{1}{\varepsilon} \rceil +1} < 1 + \frac{1}{\frac{1}{\varepsilon}}=1+\varepsilon$$ $\therefore \inf{x_n}=1$ Now by Theorem 2.1.10, since $\{x_n\}$ is monotone decreasing and bounded, we have $$\lim{x_n}=\inf{x_n}=1$$ $\blacksquare$ **4. p. 50 Ex. 2.1.13 Let $\{x_n\}$ be a convergent monotone sequence. Suppose there exists a $k \in {\mathbb N}$ such that $$ \lim{x_n}=x_k $$ Show that $x_n = x_k ~~\forall n \geq k$.** *Proof* By the definition of a limit, we have $\forall \varepsilon > 0, ~\exists ~ n^*$ such that $\forall n \geq n^*$, $$|x_n - x_k| < \varepsilon$$ Now suppose $\exists ~ m \geq k$ such that $x_m \neq x_k$ Then since $\{x_n\}$ is monotone, we have exactly one of the following: $~~~~~$Case 1: $\{x_n\}$ is monotone increasing $~~~~~~~~~~~~~~~~~~$so $\forall n \geq m, ~~~x_n \geq x_m > x_k$ $~~~~~$Case 2: $\{x_n\}$ is monotone decreasing $~~~~~~~~~~~~~~~~~~$so $\forall n \geq m, ~~~x_n \leq x_m < x_k$ Both cases imply $\exists ~ \varepsilon = \frac{|x_m - x_k|}{2}$ such that $\forall n \geq m$, $$|x_n - x_k| > \varepsilon$$ This contradicts our assumption that $\lim{x_n}=x_k$ $\therefore x_n = x_k ~~\forall n \geq k. ~~\blacksquare$ **5. p. 50 Ex. 2.1.16 Let $\{x_n\}$ be a sequence. Suppose there are two convergent subsequences $\{x_{n_i}\}$ and $\{x_{m_i}\}$. Suppose $$ \lim{x_{n_i}} = a ~~~and~~~\lim{x_{m_i}} = b $$ where $a \neq b$. Prove that $\{x_n\}$ is not convergent, without using Proposition 2.1.17** *Proof* Suppose $\lim{x_n}=L$ Then $\forall \varepsilon > 0, \exists n^*$ such that $\forall n \geq n^*, |x_n - L|< \varepsilon$ By Proposition 2.1.6 (proven in class), we know that every convergent sequence has a unique limit. This means we have at least one of the following: $~~~~~$*i.* $L \neq a$ $~~~~~$*ii.* $L \neq b$ Without loss of generality, suppose $L \neq a$. Since $\lim{x_{n_i}} = a$, we have $\forall \varepsilon > 0, \exists n_{i^*}$ such that $\forall n_i \geq n_{i^*}, |x_{n_i} - a|< \varepsilon$ But this means $\exists$ $\varepsilon = \frac{|L-a|}{3}$ where, for any given $n^*$, we can choose $n_{i^*} > n^*$ where, $\forall n_i \geq n_{i^*} > n^*$, $$|x_{n_i}-L|>\frac{|L-a|}{3}=\varepsilon$$ This contradicts our assumption that $\lim{x_n}=L$ $\therefore \{x_n\}$ is divergent. $\blacksquare$ **6. p. 50 Ex. 2.1.17** **Find a sequence $\{x_n\}$ such that for any y ∈ R, there exists a subsequence $\{x_{n_i}\}$ converging to y.** We know that the set of rational numbers, ${\mathbb Q}$, is countable. Consider the following sequence, which contains all rational numbers: $$\{x_n\}=\{-1,0,1,-2,-\frac{3}{2}, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2},2,-3,-\frac{8}{3},...\}$$ That is, the sequence that counts from $-m$ to $m$ in increments of $\frac{1}{m}, ~~ \forall m \in {\mathbb N}$ For any real number y, we can pick a subsequence $\{x_{n_i}\}$ that converges to y. For example, pick $n_1$ such that $y+\frac{1}{2}<x_{n_1}<y+1$ Next, pick $n_2$ such that $y+\frac{1}{3}<x_{n_2}<y+\frac{1}{2}$ Continuing to construct the sequence choosing $n_k$ such that $$y+\frac{1}{k+1} < x_{n_k} < y + \frac{1}{k}$$ we will have $$\lim{x_{n_i}}=\lim{(y+\frac{1}{n})}=y$$ ___ ## **Week 6** ___ **2.2.4** **$x_1=\frac{1}{2}$ and $x_{n+1}=(x_n)^2$** **Show that $\{x_n\}$ converges and find $\lim{x_n}$** First note that $\{x_n\}$ is bounded. In particular, we have $$ 0<x_n\leq \frac{1}{2}$$ This can be shown with induction. We have $$0<\frac{1}{2}=x_1 \leq \frac{1}{2}$$ Now suppose for some $k$, we have $$ 0<x_k\leq \frac{1}{2}$$ Then it follows that $$ 0<x_k^2 = x_{k+1} \leq \frac{1}{4}$$ Next, it can be shown that $\{x_n\}$ is monotone decreasing. Since $\{x_n\}$ is bounded, we have $$ 0<x_n\leq \frac{1}{2}$$ multiplying by $x_n$ yields $$ 0<x_n^2=x_{n+1}\leq \frac{1}{2}x_n \leq x_n$$ Since the sequence is bounded and monotone, it must be convergent. To find the limit, use the fact that $$\lim\{x_{n+1}\}=\lim{x_n}=x$$ Then $x=x^2$, so $x=\{0,1\}$ But we know that $x\neq 1$ because $x_n \leq \frac{1}{2}$ Thus $\lim{x_n}=0 ~~~\blacksquare$ **2.2.5** **Let $x_n:=\frac{n-\cos(n)}{n}$ Use the squeeze lemma to show that $\{x_n\}$ converges and find the limit.** Since $-1 \leq \cos(n) \leq 1$, it follows that $$1-\frac{1}{n} \leq 1 - \frac{\cos(n)}{n} \leq 1+\frac{1}{n}$$ We also know that $$\lim{(1-\frac{1}{n})}=\lim{(1+\frac{1}{n})}=1$$ So by the squeeze lemma we have $$\lim{(\frac{n-\cos(n)}{n})} = \lim{(1-\frac{\cos(n)}{n})}=1$$ **2.2.6** **Let $x_n:=\frac{1}{n^2}$ and $y_n:=\frac{1}{n}$. Define $z_n := \frac{x_n}{y_n}$ and $w_n:=\frac{y_n}{x_n}$ Do $\{z_n\}$ and $\{w_n\}$ converge? What are the limits? Can you apply proposition 2.2.5? Why or why not?** $z_n = \frac{x_n}{y_n} = \frac{\frac{1}{n^2}}{\frac{1}{n}}=\frac{1}{n}$, so $\{z_n\}$ converges to $\lim{\frac{1}{n}}=0$ $w_n = \frac{y_n}{x_n} = \frac{\frac{1}{n}}{\frac{1}{n^2}}=n$, so $\{w_n\}$ diverges to infinity. We cannot use proposition 2.2.5 because $\lim{x_n}=\lim{y_n}=0$, and these sequences are the divisors of $\{w_n\}$ and $\{z_n\}$ respectively. **2.2.7** **True or false, prove or find a counter example. If $\{x_n\}$ is a sequence such that $\{x_n^2\}$ converges, then $\{x_n\}$ converges.** False. Consider $x_n:=\{(-1)^n\}$ In this case, $\{x_n^2\}$ converges to 1, but $\{x_n\}$ diverges. **2.2.8** **Show that $\lim\limits_{n\to \infty}{\frac{n^2}{2^n}}=0$** We can use Lemma 2.2.12 (ratio test for sequences). $$L:=\lim\limits_{n\to \infty}{\frac{|\frac{(n+1)^2}{2^{n+1}}|}{|\frac{n^2}{2^n}|}}=\lim\limits_{n\to \infty}{|\frac{(n+1)^2}{2^{n+1}}||\frac{2^n}{n^2}|}=\lim\limits_{n\to \infty}{\frac{n^2+2n+1}{2n^2}}=\frac{1}{2}$$ Since $L<1$, by Lemma 2.2.12, the sequence must converge and the limit is 0. **Theorem 2.3.4** **If $\{x_n\}$ is a bounded sequence, then there exists a subsequence $\{x_{n_k}\}$ such that** $$\lim\limits_{n\to \infty}{x_{n_k}}=\lim\limits_{n\to \infty}{\sup{x_n}}$$ **Similarly, there exists a (perhaps different) subsequence $\{x_{m_k}\}$ such that** $$\lim\limits_{n\to \infty}{x_{m_k}}=\lim\limits_{n\to \infty}{\inf{x_n}}$$ *Proof (Part 1)* Define $a_n:=\sup\{x_k ~|~ k \geq n\}$ Define $x:=\lim{a_n}$ We will construct the following sequence: Let $x_{n_1}=x_1$ By the definition of supremum, $\exists~ x_{n_2}$ such that $$a_2-\frac{1}{2} < x_{n_2} < a_2~~~~~or~~~~~0\leq a_2 - x_{n_2} < \frac{1}{2}$$ Now we cannot choose any $n \leq n_2$, so $n_3 \geq n_2 + 1$ Consider the tail of $\{a_n\}$, in particular $\{a_{{n_2}+1}\}$ Again, by the definition of supremum, $\exists ~ x_{n_3}$ such that $$a_{{n_2}+1}-\frac{1}{3} < x_{n_3} < a_{{n_2}+1}~~~~~or~~~~~0\leq a_{{n_2}+1} - x_{n_3} < \frac{1}{3}$$ Now suppose we found $x_{n_{k-1}}$ We cannot pick any $n \leq n_{k-1}$, so $n_k \geq n_{k-1}+1$ Consider the tail of $\{a_n\}$, in particular $\{a_{n_{k-1}+1}\}$ By the definition of supremum, $\exists ~ x_{n_k}$ such that $$a_{{n_{k-1}}+1}-\frac{1}{k} < x_{n_k} < a_{{n_{k-1}}+1}~~~~~or~~~~~0\leq a_{{n_{k-1}}+1} - x_{n_k} < \frac{1}{k}$$ Further, since $\{a_{n_k}\}$ is monotone decreasing, note that $$|a_{n_k}-x_{n_k}|=a_{n_k}-x_{n_k} \leq a_{n_{k-1}+1}-x_{n_k} < \frac{1}{k}$$ Since $\lim{a_n}=x$, it follows that $\lim{a_{n_k}}=x$ So $\forall \varepsilon > 0, ~~\exists M_1$ such that $\forall k \geq M_1$ $$|a_{n_k}-x|<\frac{\varepsilon}{2}$$ Choose $M_2$ such that $\frac{1}{M_2} \leq \frac{\varepsilon}{2}$ Let $M=\max\{M_1,M_2\}$ Then $\forall ~ k \geq M$, we have $$|x-x_{n_k}|=|x-a_{n_k}+a_{n_k}-x_{n_k}|\leq|x-a_{n_k}|+|a_{n_k}-x_{n_k}|<\frac{\varepsilon}{2} + \frac{1}{k} \leq \frac{\varepsilon}{2} + \frac{1}{M_2} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}=\varepsilon$$ $$ $$ *Proof (Part 2)* Define $b_m:=\inf\{x_k ~|~ k \geq m\}$ Define $x:=\lim{b_m}$ We will construct the following sequence: Let $x_{m_1}=x_1$ By the definition of infimum, $\exists~ x_{m_2}$ such that $$b_2 \leq x_{m_2} < b_2+\frac{1}{2} ~~~~~or~~~~~0\leq x_{m_2}-b_2 < \frac{1}{2}$$ Now we cannot choose any $m \leq m_2$, so $m_3 \geq m_2 + 1$ Consider the tail of $\{b_m\}$, in particular $\{b_{{m_2}+1}\}$ Again, by the definition of infinum, $\exists ~ x_{m_3}$ such that $$b_{{m_2}+1} \leq x_{m_3} < b_{{m_2}+1}+\frac{1}{3} ~~~~~or~~~~~0\leq x_{m_3}-b_{{m_2}+1} < \frac{1}{3}$$ Now suppose we found $x_{m_{k-1}}$ We cannot pick any $m \leq m_{k-1}$, so $m_k \geq m_{k-1}+1$ Consider the tail of $\{b_m\}$, in particular $\{b_{m_{k-1}+1}\}$ By the definition of infimum, $\exists ~ x_{m_k}$ such that $$b_{{m_{k-1}}+1} \leq x_{m_k}< b_{{m_{k-1}}+1}+\frac{1}{k} ~~~~~or~~~~~0\leq x_{m_k} - b_{{m_{k-1}}+1} < \frac{1}{k}$$ Further, since $\{b_{m_k}\}$ is monotone increasing, note that $$|x_{m_k}-b_{m_k}|=x_{m_k}-b_{m_k} \leq x_{m_k} - b_{m_{k-1}+1} < \frac{1}{k}$$ Since $\lim{b_m}=x$, it follows that $\lim{b_{m_k}}=x$ So $\forall \varepsilon > 0, ~~\exists N_1$ such that $\forall k \geq N_1$ $$|b_{m_k}-x|<\frac{\varepsilon}{2}$$ Choose $N_2$ such that $\frac{1}{N_2} \leq \frac{\varepsilon}{2}$ Let $N=\max\{N_1,N_2\}$ Then $\forall ~ k \geq N$, we have $$|x-x_{m_k}|=|x-b_{m_k}+b_{m_k}-x_{m_k}|\leq|x-b_{m_k}|+|b_{m_k}-x_{m_k}|<\frac{\varepsilon}{2} + \frac{1}{k} \leq \frac{\varepsilon}{2} + \frac{1}{N_2} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}=\varepsilon$$ $\blacksquare$ ___ ## **Week 7** --- **1. Without using Lemma on nested Intervals prove that $$\bigcap_{n=1}^\infty[-\frac{1}{n}, \frac{1}{n}]=\{0\}.$$** *Proof* First note that $\forall ~ n \in {\mathbb N}$ $$-\frac{1}{n} < 0 < \frac{1}{n}$$ It follows that $\{0\} \in \bigcap_{n=1}^\infty[-\frac{1}{n}, \frac{1}{n}]$ Now suppose $\exists ~ [a,b] \in \bigcap_{n=1}^\infty[-\frac{1}{n}, \frac{1}{n}]$ such that $a \neq 0$ or $b \neq 0$ Without loss of generality, suppose $b \neq 0$ Then $b > 0$. But, $\forall n > \frac{1}{b}$ we have $\frac{1}{n} < b$. This implies that $[a,b] \not\in \bigcap_{n=1}^\infty[-\frac{1}{n}, \frac{1}{n}]$, which contradicts our assumption. $\blacksquare$ *Alternate Proof (With Subsets)* Note that $[-\frac{1}{n}, \frac{1}{n}]=[-\frac{1}{n},0] \cup [0,\frac{1}{n}].$ Suppose $\exists x \in \bigcap_{n=1}^\infty[-\frac{1}{n}, 0]$. Then it follows that $\forall n \in {\mathbb N}$ $$-\frac{1}{n} \leq x \leq 0$$ Since $\lim\limits_{n\to \infty}{-\frac{1}{n}}=0$, we know that $x=0$, so $x \in [0,\frac{1}{n}]$ Therefore $$\bigcap_{n=1}^\infty[-\frac{1}{n}, 0] \subseteq \bigcap_{n=1}^\infty[0,\frac{1}{n}]$$ Conversely, suppose $\exists y \in \bigcap_{n=1}^\infty[0,\frac{1}{n}]$ Then it follows that $\forall n \in {\mathbb N}$ $$0 \leq y \leq \frac{1}{n}$$ Since $\lim\limits_{n\to \infty}{\frac{1}{n}}=0$, we know that $y=0$, so $y \in [0,\frac{1}{n}]$ Therefore $$\bigcap_{n=1}^\infty[0,\frac{1}{n}] \subseteq \bigcap_{n=1}^\infty[-\frac{1}{n}, 0]$$ We can concluded that $$\bigcap_{n=1}^\infty[0,\frac{1}{n}] = \{0\} = \bigcap_{n=1}^\infty[-\frac{1}{n}, 0]$$ And so $$\bigcap_{n=1}^\infty[-\frac{1}{n}, \frac{1}{n}]= \bigcap_{n=1}^\infty[-\frac{1}{n}, 0] \cup \bigcap_{n=1}^\infty[0,\frac{1}{n}]=\{0\}$$ $\blacksquare$ **2. Exercise 2.3.5** **Let $x_n:=\frac{(-1)^n}{n}$. Find $\lim{\sup{x_n}}$ and $\lim{\inf{x_n}}$** Since $\lim{x_n}=0$ (shown previously in class), it follows by Theorem 2.3.5 that $$\lim{\sup{x_n}}=\lim{\inf{x_n}}=\lim{x_n}=0$$ **Part b** **Let $x_n:=\frac{(n-1)(-1)^n}{n}$** **Find $\limsup{x_n}$ and $\liminf{x_n}$** First note that this sequence is bounded (let $K=2$ from our definition of bounded.) By Theorem 2.3.4, we can construct a subsequence that converges to $\limsup{x_n}$ and a (perhaps different) subsequence that convergest to $\liminf{x_n}$ Consider the subsequences: $\{x_{2k}: k \geq 1\}$ $\{x_{2k-1}: k \geq 1\}$ Note that $\forall n \in {\mathbb N}$, $x_n$ belongs to exactly one of the two subsequences defined above. Further, note that $\forall k \in {\mathbb N}$ $$x_{2k-1} \leq 0 < x_{2k}$$ It follows that $\limsup{x_{2k}}=\limsup{x_n}$ and $\liminf{x_{2k-1}}=\liminf{x_n}$ Since $\{x_{2k}\}$ is monotone increasing and converges to 1, by Theorem 2.3.5, $$\limsup{x_{2k}}=1=\limsup{x_n}$$ Similarly, since $\{x_{2k-1}\}$ is monotone decreasing and converges to -1, by Theorem 2.3.5, $$\liminf{x_{2k-1}}=-1=\liminf{x_n}$$ **3. Prove that every unbounded sequence, contains an infinitely large subsequence. The proof goes by construction.** *Proof* Let $\{x_n\}$ be an unbounded sequence. Then $\forall K \in {\mathbb R}, \exists n^*$ such that $|x_{n^*}|>K$. We can construct an infinitely large subsequence, $\{x_{n_i}\}$ as follows: Let $x_{n_1}=x_1$ From the definition of unbounded, let $K=|x_{n_1}|+1$. Then $\exists ~ n_2>n_1$ such that $$|x_{n_2}| > |x_{n_1}|+1$$ Since the sequence is unbounded, and there are a finite number of points in the head of the sequence $\{x_n: n \leq n_2\}$, the tail of the sequence $\{x_n: n \geq n_2+1\}$ must be unbounded. From the definition of unbounded, let $K=|x_{n_2}|+1$. Then we can choose $n_3 \geq n_2+1$ such that $$|x_{n_3}| > |x_{n_2}|+1$$ We continue constructing the sequence in this way. Now suppose we have found $x_{i-1}$ From the definition of unbounded, let $K=|x_{n_{i-1}}|+1$. Then we can choose $n_i \geq n_{i-1}+1$ such that $$|x_{n_i}| > |x_{n_{i-1}}|+1$$. Now that our sequence $\{x_{n_i}\}$ has been constructed, consider any $M \in {\mathbb R}$. Since the sequence is unbounded, $\exists$ $n_{i^*}$ such that $x_{n_{i^*}} > M$ And further, $\forall i \geq i^*$ $$|x_{n_i}| \geq |x_{n_{i^*}}| > M $$ $\therefore$ the subsequence $\{x_{n_i}\}$ is infinitely large. $\blacksquare$ ___ ## **Week 10** ___ **Exercise 2.5.1** For $r\neq1$, $\sum_{k=0}^{n-1}r^k=\frac{1-r^n}{1-r}$ *Proof* Let $s:=\sum_{k=0}^{n-1}r^k$ So $s=1+r+r^2+...+r^{n-1}$ Note also that $rs=r+r^2+...r^{n-1}+r^n$ It follows that $$s(1-r)=s-rs=1-r^n$$ And solving for s, we get $$s=\frac{1-r^n}{1-r}$$ $\blacksquare$ **Exercise 2.5.2** For $-1<r<1$, $$\sum_{n=0}^{\infty}r^n=\frac{1}{1-r}$$ *Proof* From exercise 2.5.1, we know that $$\sum_{n=0}^{x-1}r^n=\frac{1-r^x}{1-r}$$ It follows that, for $-1<r<1$ $$\sum_{n=0}^{\infty}r^n=\lim_{x\to\infty}\frac{1-r^x}{1-r}=\frac{1}{1-r}$$ $\blacksquare$ **Exercise 2.5.3** **Decide the convergence or divergence of the following series** a) $$\sum_{n=1}^{\infty}{\frac{3}{9n+1}}$$ This series diverges, as can be shown by the comparison test. $\forall n\geq1$: $$\sum_{n=1}^{\infty}{\frac{3}{9n+1}}=3\sum_{n=1}^{\infty}{\frac{1}{9n+1}}\geq3\sum_{n=1}^{\infty}{\frac{1}{10n}}=\frac{3}{10}\sum_{n=1}^{\infty}{\frac{1}{n}}$$ Since $\sum{\frac{1}{n}}$ diverges to infinity, so too must $\sum{\frac{3}{9n+1}}$ b) $$\sum_{n=1}^{\infty}{\frac{1}{2n-1}}$$ This series diverges, as can be shown by the comparison test. $\forall n\geq1$: $$\sum_{n=1}^{\infty}{\frac{1}{2n-1}}\geq\sum_{n=1}^{\infty}{\frac{1}{2n}}=\frac{1}{2}\sum_{n=1}^{\infty}{\frac{1}{n}}$$ Since $\sum{\frac{1}{n}}$ diverges to infinity, so too must $\sum{\frac{1}{2n-1}}$ ___ ## **Week 11** ___ **Exercise 2.5.3 c,d,e** **c)** Decide the convergence or divergence of: $$\sum_{n=1}^{\infty}{\frac{(-1)^n}{n^2}}$$ First, we can show that this series converges absolutely: $$\sum_{n=1}^{\infty}{|\frac{(-1)^n}{n^2}|}=\sum_{n=1}^{\infty}{\frac{|(-1)^n|}{|n^2|}}=\sum_{n=1}^{\infty}{\frac{1}{n^2}}$$ So $\sum_{n=1}^{\infty}{|\frac{(-1)^n}{n^2}|}$ is a p-series with p=2, and by **Proposition 2.5.15** (p-series test), since p>1, it converges. Therefore the series $\sum_{n=1}^{\infty}{\frac{(-1)^n}{n^2}}$ converges absolutely, so by **Proposition 2.5.13**, the series converges. $\blacksquare$ $$ $$ **d)** Decide the convergence or divergence of: $$\sum_{n=1}^{\infty}{\frac{1}{n(n+1)}}$$ Since $\forall n\geq 1, \frac{1}{n^2+n} < \frac{1}{n^2}$ it follows that $$\sum_{n=1}^{\infty}{\frac{1}{n(n+1)}}=\sum_{n=1}^{\infty}{\frac{1}{n^2+n}}<\sum_{n=1}^{\infty}{\frac{1}{n^2}}$$ We know that $\sum{\frac{1}{n^2}}$ converges by the p-series test. Therefore by the comparison test, $\sum{\frac{1}{n(n+1)}}$ converges. $\blacksquare$ $$ $$ **e)** Decide the convergence or divergence of: $$\sum_{n=1}^{\infty}{ne^{-n^2}}$$ We can apply the ratio test $$\lim_{n \to \infty}{\frac{|(n+1)e^{-(n+1)^2}|}{|ne^{-n^2}|}}=\lim_{n \to \infty}{\frac{(n+1)e^{n^2}}{ne^{(n+1)^2}}}=\lim_{n \to \infty}{\frac{(n+1)e^{n^2}}{ne^{n^2+2n+1}}}=\lim_{n \to \infty}{\frac{(n+1)}{ne^{2n+1}}}$$ $$=\lim_{n \to \infty}{\frac{n}{ne^{2n+1}}}+\lim_{n \to \infty}{\frac{1}{ne^{2n+1}}}=\lim_{n \to \infty}{\frac{1}{e^{2n+1}}}+\lim_{n \to \infty}{\frac{1}{ne^{2n+1}}}=0+0=0$$ So by **Proposition 2.5.17** (Ratio test), the series converges. $\blacksquare$ **2.5.4** **a)** **Prove that if $\sum_{n=1}^{\infty}{x_n}$ converges, then $\sum_{n=1}^{\infty}({x_{2n}}+{x_{2n+1}})$ also converges** Note that the union of the sequences $x_{2n}$ and $x_{2n+1}$ is a subsequence of $x_n$. Specifically, this union includes all terms in $x_n$ except for $x_1$. It follows that $$\sum_{n=1}^{\infty}({x_{2n}}+{x_{2n+1}})=\sum_{n=1}^{\infty}{x_{2n}}+\sum_{n=1}^{\infty}{x_{2n+1}}=-x_1+\sum_{n=1}^{\infty}{x_n}$$ We know $\sum{x_n}$ converges, and $x_1$ is clearly finite. Therefore $\sum_{n=1}^{\infty}({x_{2n}}+{x_{2n+1}})$ also converges. $\blacksquare$ **b)** **Find an explicit example where the converse does not hold.** Note that $\sum{((-1)^{2n}+(-1)^{2n+1})}=\sum{0}$ and therefore converges. But, the series $\sum{(-1)^n}$ does not converge. ___ ## **Week 12** ___ **Lemma 3.1.7** Let $S=(a,b)$ where $a,b \in {\mathbb{R}}$ and let c be a cluster point on the interior of $S$ ($c \neq a$ and $c \neq b$). Let $f:S \to {\mathbb{R}}$ be a function. Then $f(x) \to L$ as $x \to c$ if and only if for every sequence {$x_n$} of numbers such that $x_n \in S$ and $x_n \neq c ~~\forall n$, and such that $\lim{x_n}=c$, we have that the sequence {$f(x_n)$} converges to $L$. *Proof* *Calc definition $\to$ Sequential definition* Suppose $f(x) \to L$ as $x \to c$, and {$x_n$} is a sequence such that $x_n \in S$, $x_n \neq c$, and $\lim{x_n}=c$ We wish to show that {$f(x_n)$} converges to $L$. Let $\varepsilon > 0$ be given. Find $\delta > 0$ such that if $x \in S, x \neq c$ and $|x-c|<\delta$ then $|f(x)-L|<\varepsilon$ From the definition of a convergent sequence, we can chooose $M$ such that $\forall n \geq M$, $|x_n - c| < \delta$ $\therefore ~|f(x_n)-L| < \varepsilon$ So {$f(x_n)$} converges to $L$. *Sequential definition $\to$ Calc definition* Suppose the calculus definition fails. That is, $\exists \varepsilon > 0$ such that $\forall \delta > 0$, $\exists x \in S, x \neq c$ such that $|x-c|<\delta$ and $|f(x)-L| \geq \varepsilon$. Choose $\delta = \frac{1}{n}$ to construct a sequence {$x_n$}. We know that $\exists \varepsilon > 0$ such that $\forall n$, $\exists x_n \in S, x_n \neq c$ where $|x_n - c| < \frac{1}{n}$ and $|f(x_n)-L| \geq \varepsilon$ The sequence {$x_n$} converges to c, but the sequence {f$(x_n)$} does not converge to $L$. So the sequential definition fails as well, and this direction is proven via contrapositive. $\blacksquare$ ___ ## **Week 13** ___ **Exercise 6.6.1** Let $f$ and $g$ be bounded functions on $[a,b]$. Prove $$||f+g||_u \leq ||f||_u + ||g||_u$$ *Proof* By **definition 6.1.9**, for all $x$ in the domains of $f$ and $g$, we have $$||f+g||_u = \sup\{|f(x)+g(x)|\}$$ We know by the triangle inequality that $|f(x)+g(x)| \leq |f(x)|+|g(x)|$ It follows that $$\sup\{|f(x)+g(x)|\} \leq \sup\{|f(x)|\}+\sup\{|g(x)|\}=||f||_u + ||g||_u$$ $\blacksquare$ **Exercise 6.1.6** *Find an example of a sequence of functions ${f_n}$ and ${g_n}$ that converge uniformly to some $f$ and $g$ on some set $A$, but such that ${f_{n}g_{n}}$ (the multiple) does not converge uniformly to $fg$ on $A$.* Let $A=[0,1]$ Let ${f_n}={x+\frac{1}{n}}$ Let ${g_n}={x+\frac{2}{n}}$ So $f_{n}g_{n} = x^2+\frac{3x}{n}+\frac{2}{n^2}$ ${f_n}$ and ${g_n}$ both converge uniformly to $x$, but $f_{n}g_{n}$ does not converge uniformly to $x^2$, as shown in the Desmos link below. [Link to Desmos for 6.1.6](https://www.desmos.com/calculator/glsjic9uey) $\gamma$