Math 181 Miniproject 11: Riemann Sums.md --- --- tags: MATH 181 --- Math 181 Miniproject 11: Riemann Sums === **Overview:** This miniproject focuses on the use of $\sum$-notation to estimate the area under a curve. Students will use Desmos to set up and evaluate Riemann sums to get the area under a curve that is not amenable to the Fundamental Theorem of Calculus. **Prerequisites:** Section 4.3 of *Active Calculus.* --- :::info For this miniproject you will be estimating the area under the curve $$ f\left(x\right)=\left|\frac{10x}{x^2+1}\sin \left(x\right)\right|+\frac{4}{x^2+1} $$ from $x=1$ to $x=10$. ![](https://i.imgur.com/h56UdIm.png) Before you start, enter the function $f(x)$ into Desmos so that you can refer to it later. (1) Evaluate $R_3$ using Desmos. ::: (1) $f(1)=\frac{10(1)}{1^2+1}sin(1)+\frac{4}{1^2+1}=6.207$ $f(2)=\frac{10(2)}{2^2+1}sin(2)+\frac{4}{2^2+1}=4.437$ $f(3)=\frac{10(3)}{3^2+1}sin(3)+\frac{4}{3^2+1}=0.823$ $f(4)=\frac{10(4)}{4^2+1}sin(4)+\frac{4}{4^2+1}=2.016$ $f(5)=\frac{10(5)}{5^2+1}sin(5)+\frac{4}{5^2+1}=1.998$ $f(6)=\frac{10(6)}{6^2+1}sin(6)+\frac{4}{6^2+1}=0.561$ $f(7)=\frac{10(7)}{7^2+1}sin(7)+\frac{4}{7^2+1}=0.999$ $f(8)=\frac{10(8)}{8^2+1}sin(8)+\frac{4}{8^2+1}=1.279$ $f(9)=\frac{10(9)}{9^2+1}sin(9)+\frac{4}{9^2+1}=0.501$ $f(10)=\frac{10(10)}{10^2+1}sin(10)+\frac{4}{10^2+1}=0.578$ $R_3$ sum for n=3 $\triangle{}x=xupper-\frac{xlower}{n}$ or $\triangle{}x=\frac{10-1}{3}$ $\triangle x=3$ The points are {1,4,7,10} {4,7,10} are the correct points and $R_3$ is given by $R_3=\sum^3_1 f(i)\triangle x=3[f(4)+f(7)+f(10)]$ Which equals 10.779 :::info (2) Evaluate $M_3$ using Desmos. ::: (2) $M_3$ sum is n=3 and $\triangle x=3$ The points are 1,4,7,10 The middle points are {2.5,5.5,8.5} $M_3=\sum^3_1f(i)\triangle x$ $f(2.5)=\frac{10(2.5)}{2.5^2+1}sin(2.5)+\frac{4}{2.5^2+1}=2.615$ $f(5.5)=\frac{10(5.5)}{5.5^2+1}sin(5.5)+\frac{4}{5.5^2+1}=1.369$ $f(8.5)=\frac{10(8.5)}{8.5^2+1}sin(8.5)+\frac{4}{8.5^2+1}=1.981$ $M_3=3(2.615+1.369+0.981)$ $=14.895$ :::info (3) Evaluate $L_9$ using Desmos. ::: (3) $L_9$ is sum n=9 $\triangle x=\frac{10-1}{9}=1$ Points are 1,2,3,4,5,6,7,8,9,10 Left points are {1,2,3,4,5,6,7,8,9} $L_9=\sum^9_1f(i)\triangle x=19.399$ :::info (4) Evaluate $R_{100}$ using Desmos. You will probably want to use the $\sum$-notation capabilities of Desmos. ::: (4) n=100, a=1 $I=\sum^{^n-1}_{n=0}if(S(i))*w$ $I=16.27435$ :::info (5) Evaluate $R_{1000}$ using Desmos. ::: (5) $n=1000, a=1$ $I=\sum^{n-1}_{n=0}f(s(i))*w$ $I=16.0452$ :::info (6) Write out an expression using a limit that will give the exact area under the curve $y=f(x)$ from $x=1$ to $x=10$. ::: (6) $\sum^{10}_{1}f(i)\triangle x$ and $\triangle x=\frac{X_u-X_l}{n}n->infinity$ $A=\int_{x=1}^{10}f\left(x\right)dx$ $A=\int_{x=1}^{10}\left[\frac{10x}{x^{2}+1}\sin\left(x\right)+\frac{4}{x^{2}+1}\right]dx$ --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.