Math 181 Miniproject 7: The Shape of a Graph.md --- --- tags: MATH 181 --- Math 181 Miniproject 7: The Shape of a Graph === **Overview:** In this miniproject you will be using the techniques of calculus to find the behavior of a graph. **Prerequisites:** The project draws heavily from the ideas of Chapter 1 and $2.8$ together with ideas and techniques of the first and second derivative tests from $3.1$. --- :::info We are given the functions $$ f(x)=\frac{12x^2-16}{x^3},\qquad f'(x)=-\frac{12(x^2-4)}{x^4},\qquad f''(x)=\frac{24(x^2-8)}{x^5}. $$ The questions below are about the function $f(x)$. Answer parts (1) through (10) below. If the requested feature is missing, then explain why. Be sure to include the work/test that you used to rigorously reach your conclusion. It is not sufficient to refer to the graph. (1) State the function's domain. ::: (1)$f(x)=\frac{12x^2-16}{x^3}$ the domain is $(-infinity,0)U(0,infinity)$ $f'(x)=\frac{12(x^2-4)}{x^4}$ domain is $(-infinity,0)U(0,infinity)$ $f''(x)=\frac{24(x^2-8)}{x^5}$ domain is $(-infinity,0)U(0,infinity)$ :::info (2) Find all $x$- and $y$-intercepts. ::: (2)$f(x)=\frac{12(x^2-16)}{x^3}$ intercept X $(-\frac{2sqrt(3)}{3},0)(\frac{2sqrt(3)}{3},0)$and y has no intercepts $f'(x)=\frac{12(x^2-4)}{x^4}$ intercept X $(2,0)(-2,0)$ and y has no intercpts $f''(x)=\frac{24(x^2-8)}{x^5}$ intercept x $(2sqrt2,0),(-2sqrt2,0)$ and y has no intercepts :::info (3) Find all equations of horizontal asymptotes. ::: (3)$f(x)=\frac{12(x^2-16)}{x^3}$ y=0 $f'(x)=\frac{12(x^2-4)}{x^4}$ y=0 $f''(x)=\frac{24(x^2-8)}{x^5}$ y=0 :::info (4) Find all equations of vertical asymptotes. ::: (4) $f(x)=\frac{12(x^2-4)}{x^3}$ x=0 $f'(x)=\frac{12(x^2-4)}{x^4}$ x=0 $f''(x)\frac{24(x^2-8)}{x^5}$ x=0 :::info (5) Find the interval(s) where $f$ is increasing. ::: (5)$f(x)=\frac{12(x^2-16)}{x^3}$ increases on $(-2,0),(0,2)$ $f'(x)=\frac{12(x^2-4)}{x^4}$ increases on $(-infinity,-2sqrt2),(0,2sqrt2)$ $f''(x)=\frac{24(x^2-8)}{x^5}$ increases on $(--\frac{2sqrt30}{3},0),(0,\frac{2sqrt30}{3})$ :::info (6) Find the $x$-value(s) of all local maxima. (Find exact values, and not decimal representations) ::: (6)$f(x)=\frac{12(x^2-16)}{x^3}$ is $f(x)=\frac{4(3x^2-4)}{x^3}$ $f'(x)=\frac{12(x^2-4)}{x^4}$ is $f'(x)=\frac{12(x+2)(x-2)}{x^4}$ $f''(x)=\frac{24(x^2-8)}{x^5}$ is $f''(x)=\frac{24x^2-192}{x^5}$ :::info (7) Find the $x$-value(s) of all local minima. (Find exact values, and not decimal representations) ::: (7)$f(x)=\frac{12(x^2-16)}{x^3}$ is $(-2,-4)$ $f'(x)=\frac{12(x^2-4)}{x^4}$ is $(2sqrt2,\frac{3}{4})$ $f''(x)=\frac{24(x^2-8)}{x^5}$ is $(-\frac{2sqrt30}{3},-\frac {9sqrt30}{250})$ :::info (8) Find the interval(s) on which the graph is concave downward. ::: (8)$f(x)=\frac{12(x^2-16)}{x^3}$ are $(infinity,-2sqrt2)$ and $(0,2sqrt2)$ $f'(x)=\frac{12(x^2-4)}{x^4}$ are $(-\frac{2sqrt30}{3},0)$and $(0,\frac{2sqrt30}{3})$ $f''(x)=\frac{24(x^2-8)}{x^5}$ are $(-infinity,-2sqrt5)$ and $(0,2sqrt5)$ :::info (9) State the $x$-value(s) of all inflection points. (Find exact values, and not decimal representations) ::: (9)$f(x)=\frac{12(x^2-16)}{x^3}$ is $(2sqrt2,\frac{5sqrt2}{2})$ $f'(x)=\frac{12(x^2-4)}{x^4}$ is $(-\frac{2sqrt30}{3},\frac{63}{100})$ and $\frac{2sqrt30}{3},\frac{63}{100}$ $f''(x)=\frac{24(x^2-8)}{x^5}$ is $(2sqrt5,\frac{9sqrt5}{125})$ :::info (10) Include a sketch of the graph of $y=f(x)$. Plot the different segments of the graph using the color code below. * **blue:** $f'>0$ and $f''>0$ * **red:** $f'<0$ and $f''>0$ * **black:** $f'>0$ and $f''<0$ * **gold:** $f'<0$ and $f''<0$ (In Desmos you could restrict the plot $y=f(x)$ on the interval $[2,3]$ by typing $y=f(x)\{2\le x\le 3\}$.) Be sure to set the bounds on the graph so that the features of the graph that you listed above are easy to see. ::: (10) ![](https://i.imgur.com/hEKFN2k.png) --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.