# 42. Trapping Rain Water ## Description Given `n` non-negative integers representing an elevation map where the width of each bar is `1`, compute how much water it can trap after raining. ### Example 1: ![image](https://hackmd.io/_uploads/rknmFGLeA.png) Input: height = [0,1,0,2,1,0,1,3,2,1,2,1] Output: 6 Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. ### Example 2: Input: height = [4,2,0,3,2,5] Output: 9 ### Constraints: `n == height.length` `1 <= n <= 2 * 104` `0 <= height[i] <= 105` ## 解題 每格裡面最多能夠儲存 min(向左尋找最高的牆, 向右尋找最高的牆)的水量,計算出每格可儲存水量後加總即是答案 ```cpp class Solution { public: int trap(vector<int>& height) { int ans = 0; // calculate the highest wall between index i to n-1 int max_r[height.size()]; max_r[height.size()-1] = height[height.size()-1]; for(int i=height.size()-2; i>=0; i--) { max_r[i] = max(max_r[i+1], height[i]); } // the highest wall to the left can be calculate will traveling int max_l = 0; for(int i=0; i<height.size(); i++) { max_l = max(max_l, height[i]); int h = min(max_l, max_r[i]) - height[i]; ans += h; } return ans; } }; ```