# Conduit flow dynamics during Caldera-forming eruptions ## Basic equations \begin{eqnarray} && \rho w \pi (r_2^2 - r_1^2) = Q \label{eq:mass} \\ && \rho w \dfrac{d w}{d z} = -\dfrac{d p}{d z} - \rho g - F_\mathrm{w} \label{eq:mom} \\ && \dfrac{1}{\rho} = \dfrac{n}{\rho_\mathrm{g}} + \dfrac{1-n}{\rho_\mathrm{lc}} \label{eq:rho} \\ && \rho_\mathrm{g} = \dfrac{p}{RT} \label{eq:rhog} \\ && \rho_\mathrm{lc} = (1-\beta) \rho_\mathrm{l} + \beta \rho_\mathrm{c} \label{eq:rholc} \\ && n = \dfrac{n_0 - n_\mathrm{l} c}{1 - n_\mathrm{l} c} \label{eq:n} \\ && c = s p^{m} \label{eq:c} \\ && n_\mathrm{l} = \dfrac{(1-\beta) \rho_\mathrm{l}}{\rho_\mathrm{lc}} \label{eq:nl} \\ && F_\mathrm{w} = \left\{ \begin{array}{ll} \dfrac{8 \eta}{(r_2-r_1)^2} w & (\phi < \phi_\mathrm{cr}) \\ \dfrac{\lambda \rho}{4(r_2-r_1)} w^2 & (\phi \ge \phi_\mathrm{cr}) \end{array} \right. \label{eq:Fw} \\ && \eta = \eta_\mathrm{l}(c, T) f_{\beta}(\beta, R_{\beta},\dot{\varepsilon}) f_{\phi}(\phi) \label{eq:etafunc} \\ && \log_{10} \eta_\mathrm{l}(c, T) = −3.545+0.833 \ln (100c)+ \dfrac{9601−2368 \ln (100c)}{T −[195.7+32.25 \ln (100c)]} \label{eq:etal} \\ && f_{\beta}(\beta, R_{\beta},\dot{\varepsilon}) = \dfrac{1+\left( \dfrac{\beta}{\beta^{*}} \right)^{\delta}} {\left\{1-(1-\xi) \mathrm{erf} \left[ \dfrac{\sqrt{\pi}}{2(1-\xi)} \dfrac{\beta}{\beta^{*}} \left\{ 1 + \left( \dfrac{\beta}{\beta^{*}} \right)^{\gamma} \right\} \right] \right\}^{B \beta^{*}}} \label{eq:funcetabeta} \\ && \hspace{4em} \beta^{*} = \left[ \beta_\mathrm{m} + \Delta \beta \dfrac{(\dot{\varepsilon}/\varepsilon_\mathrm{c})^{n_\beta} - (\varepsilon_\mathrm{c}/\dot{\varepsilon})^{n_\beta}}{(\dot{\varepsilon}/\varepsilon_\mathrm{c})^{n_\beta} + (\varepsilon_\mathrm{c}/\dot{\varepsilon})^{n_\beta}} \right] \cdot R_\beta^{-b_1} \label{eq:betast} \\ && \hspace{4em} \delta = \left[ \delta_\mathrm{m} + \Delta \delta \dfrac{(\dot{\varepsilon}/\varepsilon_\mathrm{c})^{n_\beta} - (\varepsilon_\mathrm{c}/\dot{\varepsilon})^{n_\beta}}{(\dot{\varepsilon}/\varepsilon_\mathrm{c})^{n_\beta} + (\varepsilon_\mathrm{c}/\dot{\varepsilon})^{n_\beta}} \right] \cdot e^{-b_2(R_\beta - 1)} \label{eq:delta} \\ && \hspace{4em} \xi = \left[ \xi_\mathrm{m} + \Delta \xi \dfrac{(\dot{\varepsilon}/\varepsilon_\mathrm{c})^{n_\beta} - (\varepsilon_\mathrm{c}/\dot{\varepsilon})^{n_\beta}}{(\dot{\varepsilon}/\varepsilon_\mathrm{c})^{n_\beta} + (\varepsilon_\mathrm{c}/\dot{\varepsilon})^{n_\beta}} \right] \cdot R_\beta^{-b_3} \label{eq:xi} \\ && \hspace{4em} \gamma = \left[ \gamma_\mathrm{m} + \Delta \gamma \dfrac{(\dot{\varepsilon}/\varepsilon_\mathrm{c})^{n_\beta} - (\varepsilon_\mathrm{c}/\dot{\varepsilon})^{n_\beta}}{(\dot{\varepsilon}/\varepsilon_\mathrm{c})^{n_\beta} + (\varepsilon_\mathrm{c}/\dot{\varepsilon})^{n_\beta}} \right] \cdot R_\beta^{-b_4} \label{eq:gamma} \\ && \hspace{4em} \dot{\varepsilon} = \dfrac{w}{r_2 - r_1} \label{eq:strainrate} \\ && f_{\phi}(\phi) = \left\{ \begin{array}{ll} (1-\phi)^{-1} & (\mathrm{Ca} \ll 1) \\ (1-\phi)^{5/3} & (\mathrm{Ca} \gg 1) \end{array} \right. \label{eq:funcetaphi} \end{eqnarray} ### Refereneces -- https://www.mohno-dispenser.jp/compass/compass16.html -- http://crystallization.eng.niigata-u.ac.jp/%E5%86%86%E7%AE%A1%E5%86%85%E6%B5%81%E5%8B%95.pdf ## Variables and parameters | Name | Description | Value | |:------------------|:-----|:-----| | $\rho$ | Density (kg m$^{-3}$) | - | | $w$ | Velocity (m s$^{-1}$) | - | | $r_1$ | Inner conduit radius (m) | - | | $r_2$ | Outer conduit radius (m) | - | | $Q$ | Discharge rate (kg s$^{-1}$) | - | | $p$ | Pressure (Pa) | - | | $z$ | Vertical coordinate (m) | - | | $c$ | H$_2$O concentration | - | | $n$ | Mass fraction of gas | - | | $\phi$ | Gas volume fraction | - | | $\rho_\mathrm{g}$ | Gas density (kg m$^{-3}$) | - | | $n_\mathrm{l}$ | Liquid volume fraction with respect to liquid+crystal | - | | $\rho_\mathrm{lc}$| Liquid-crystal density (kg m$^{-3}$) | - | | $\eta$ | Magma viscosity (Pa s) | - | | $R_\beta$ | Aspect ratio of crystal | - | | $\dot{\varepsilon}$| Strain rate (s$^{-1}$) | - | | $n_0$ | Initial H$_2$O content (wt \%) | $3.9$ | | $T$ | Temperature (K) | $1086$ | | $\beta$ | Crystal volume fraction | $0.51$ | | $\phi_\mathrm{cr}$| Critical $\phi$ for fragmentation | $0.51$ | | $L$| Conduit length (m) | $10000$ | | $p_\mathrm{ch}$| Chamber pressure (MPa) | $245.1$ | | $\rho_\mathrm{l}$ | Liquid density (kg m$^{-3}$) | $2500$ | | $\rho_\mathrm{c}$ | Crystal density (kg m$^{-3}$) | $2500$ | | $R$ | Gas constant (J K$^{−1}$ kg$^{−1}$ mol$^{−1}$) | 462 | | $s$ | Solubility constant (Pa$^{−0.5}$) | $4.11 \times 10^{-6}$ | | $m$ | Solubility constant | $0.5$ | | $\lambda$ | Friction coefficient | $0.03$ | | $B$ | Coefficient for $f_\beta$ | $2.5$ | | $n_\beta$ | Coefficient for $f_\beta$ | $0.3$ | | $\varepsilon_\mathrm{c}$ | Coefficient for $f_\beta$ | $4.07 \times 10^{-4}$ | | $\beta_\mathrm{m}$ | Coefficient for $f_\beta$ | $0.62$ | | $\Delta \beta$ | Coefficient for $f_\beta$ | $0.09$ | | $\delta_\mathrm{m}$ | Coefficient for $f_\beta$ | $7.73$ | | $\Delta \delta$ | Coefficient for $f_\beta$ | $5.73$ | | $\xi_\mathrm{m}$ | Coefficient for $f_\beta$ | $4.75 \times 10^{-4}$ | | $\Delta \xi$ | Coefficient for $f_\beta$ | $4.56 \times 10^{-4}$ | | $\gamma_\mathrm{m}$ | Coefficient for $f_\beta$ | $5.92$ | | $\Delta \gamma$ | Coefficient for $f_\beta$ | $5.11$ | | $b_1$ | Coefficient for $f_\beta$ | $0.538$ | | $b_2$ | Coefficient for $f_\beta$ | $0.092$ | | $b_3$ | Coefficient for $f_\beta$ | $4.568$ | | $b_4$ | Coefficient for $f_\beta$ | $0.718$ | ## Results - Fig. 1: $r_2 = 5000$ (m), $R_\beta = 1.87$ ![](https://hackmd.io/_uploads/rJ9q6mgga.png) - Fig. 2a: $r_2 = 5000$ (m), $R_\beta = 1$ ![](https://hackmd.io/_uploads/Hkd3TQeep.png) - Fig. 2b: $r_2 = 5000$ (m), $R_\beta = 1.5$ ![](https://hackmd.io/_uploads/BkjTTXxg6.png) - Fig. 2c: $r_2 = 5000$ (m), $R_\beta = 2$ ![](https://hackmd.io/_uploads/rJ9rR7leT.png) - Fig. 3a: $r_2 = 1000$ (m), $R_\beta = 1.87$ ![](https://hackmd.io/_uploads/HyEYAmlea.png) - Fig. 3b: $r_2 = 10000$ (m), $R_\beta = 1.87$ ![](https://hackmd.io/_uploads/ryitRQxgp.png)