## Compulsory Resources * [Hands on ML](http://14.139.161.31/OddSem-0822-1122/Hands-On_Machine_Learning_with_Scikit-Learn-Keras-and-TensorFlow-2nd-Edition-Aurelien-Geron.pdf) * [CS-229 Playlist](https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU) * [CS-229 Lecture Resources](https://github.com/maxim5/cs229-2018-autumn/tree/main) * [StatQuest tree playlist](https://youtube.com/playlist?list=PLakf6XoaFMqKLBIkOTGxUgABAeNPmbv9g) * [pca blogs](https://peterbloem.nl/blog/pca) * [pca lecture](:https://youtu.be/I_c6w1SJSJs?si=G6VJVHU8IlNe08m-) ## Exhaustive Resources * [Extensive resource for PCA and SVD](https://peterbloem.nl/files/unraveling-pca.pdf) * [ISLP](https://hastie.su.domains/ISLP/ISLP_website.pdf) ## Supervised Learning: * Lecture 5 to 7 and Lecture 10 * Ch 1-7 Hands on ML * Skip videos 5,8,9,10,11,21 from statquest tree playlist and watch rest of them(watch this before watching lecture 10 of cs229) * For svm and kernels go through the lecture notes(chapter 5,6) ## Unsupervised Learning and Dimensionality Reduction: * Lecture lec 13 to 16 * Cover the pca lecture between lect 15 and 16 * Ch 8 and 9 * Go through all the pca blogs from 1 to 5