# MLCV Assignment 2 ## Exercise 1 ### 1) Entropy = $1$ ### 2) ```graphviz digraph { node [shape=rect] a1 node [shape=ellipse] a1T[label="+=2 -=1"] a1F[label="+=1 -=2\n"] a1 -> a1T [label=T] a1 -> a1F [label=F] } ``` \\[E_{a1_T}=E_{a1_F}=-\frac{2}{3}\cdot log_2({2\over3})-\frac{1}{3}\cdot log_2({1\over3})\\] \\[E=-\frac{3}{6}E_{a1_T}+\frac{3}{6}E_{a1_F}=0.918\\] \\[Gain=1.0-0.918=0.082\\] ```graphviz digraph { node [shape=rect] a2 node [shape=ellipse] a2T[label="+=2 -=2"] a2F[label="+=1 -=1\n"] a2 -> a2T [label=T] a2 -> a2F [label=F] } ``` \\[E_{a2_T}=E_{a2_F}=-\frac{2}{4}\cdot log_2({2\over4})-\frac{1}{2}\cdot log_2({1\over2})\\] \\[E=-\frac{3}{6}E_{a2_T}+\frac{3}{6}E_{a2_F}=1.0\\] \\[Gain=1.0-1.0=0\\] ### 3) 1. Schritt: Nach a1 splitten, weil höherer Gain ```graphviz digraph { node [shape=rect] a1 node [shape=ellipse] a1T[label="+=2 -=1"] a1F[label="+=1 -=2\n"] a1 -> a1T [label=T] a1 -> a1F [label=F] } ``` \\[E=0.918\\] \\[Gain=1.0-0.918=0.082\\] 2. Nach a2 splitten, weil immer noch Gain vorhanden ```graphviz digraph { node [shape=rect] a1 a1Ta2 [label=a2] a1Fa2 [label=a2] node [shape=ellipse] a1 -> a1Ta2 [label=T] a1 -> a1Fa2 [label=F] a1Ta2 -> a1Ta2T [label=T] a1Ta2 -> a1Ta2F [label=F] a1Fa2 -> a1Fa2T [label=T] a1Fa2 -> a1Fa2F [label=F] a1Ta2T[label="+=2 -=0"] a1Ta2F[label="+=0 -=1\n"] a1Fa2T[label="+=0 -=2"] a1Fa2F[label="+=1 -=0\n"] } ``` \\[Entropy = 0\\] \\[Gain_{V1} = 0.918-0 = 0\\] \\[Gain = 1-0 = 1\\]