<img src="https://cdn.ucode.vn/uploads/1/upload/aGrtFmNH.png" height="100%"/> --- <img src="https://cdn.ucode.vn/uploads/1/upload/vhPJcMsT.png"/> --- <img src="https://cdn.ucode.vn/uploads/1/upload/mfviCnNX.png"/> --- <img src="https://cdn.ucode.vn/uploads/1/upload/jVHGFcZN.png"/> --- # Aiken programming language tutorial thuc.nc@teko.vn Note: Speaker notes here --- ## Aiken as a Cardano Smart Contract language ---- <img src="https://cdn.ucode.vn/uploads/1/upload/IwMejMXA.png" width="60%"/> ---- #### Cardano Smart Contract Programming language - Plutus: Haskell - plu-ts: Typescript - opshin: Python - Marlowe: blockly - **Aiken**: Rust similar ---- #### Aiken programming language - A new programming language and toolchain - Takes inspiration from: Gleam, Rust, and Elm for excellent developer experience - Exclusively used for creating the **on-chain** validator-scripts ---- #### Sample Aiken code https://danolearn.com/en/ucode/quick-sort-59119 ```rust= use aiken/list fn quicksort(xs: List<Int>) -> List<Int> { when xs is { [] -> [] [p, ..tail] -> { let before = tail |> list.filter(fn(x) { x < p }) |> quicksort let after = tail |> list.filter(fn(x) { x >= p }) |> quicksort list.concat(before, [p, ..after]) } } } test quicksort_0() { quicksort([]) == [] } test quicksort_1() { quicksort([3, 2, 1, 4]) == [1, 2, 3, 4] } test quicksort_2() { quicksort([1, 2, 3, 4]) == [1, 2, 3, 4] } ``` --- ## Aiken as a functional programming language ---- #### Functiontal vs non-functional - Functional languages: Haskell, Lisp, Clojure, Elixir, Elm, OCaml, Erlang, F# - Non-functional (imperative) languages: all familiar ones - Some modern languages combines functional programming principles: Rust, Scala, Kotlin, Swift, Dart ---- #### Functiontal vs non-functional: example ```python ar = [1, 2, 3] for i in (0, len(ar)): ar[i] = ar[i] * 2 ``` vs ```python ar = [1, 2, 3].map(v => v * 2) ``` ---- #### Functional Programming – Characteristics - Designed on the concept of mathematical functions: conditional expressions & **recursion** - Supports **higher-order functions** and **lazy evaluation** - Do **NOT** support flow Controls like **loop** statements Note: - Higher-order functions (vs first-order functions): take function(s) as arguments and/or return a function as its result - Lazy evaluation: the evaluation of expressions is delayed until their results are actually needed. This approach helps optimize the execution of programs by reducing the computational load, enabling efficient processing and allocation of resources. ---- #### Functional Programming – Pros & Cons - Pros - Bugs-Free Code − no states, so no side-effects - Efficient Parallel Programming: NO mutable states - Lazy Evaluation: Lazy Lists, Lazy Maps - Cons - Requires a large memory space Note: - Side effects: A side effect is an interaction with the outside world: functions without returns, mutating global state inside function, missing handling cases... - Requires a large memory space: As it does not have state, you need to create new objects every time to perform actions. --- # Aiken language tutorial - Variables & primitive types - Functions - Tests - Control Flow - ... ---- # Aiken language tutorial - ... - Modules - Working with `list` - Working with `bytearray` - Working with `dict` --- ### Variables & Primitive types - Variables & Constants - Primitive Types ---- #### Variables & Constants ```rust let x = 1 let y: Int = x // Type annotations let x = 2 // shadows previous bindings const start_year = 2001 /* module constant */ const end_year = 2011 ``` - Let-bindings aren't allowed in a top-level Aiken module - Module constant values are inlined by the compiler, like `#define` in C/C++. ---- #### Primitive Types - Int - Literals: `42`, `14`, `1_000_000` - Operations: `+`, `-`, `*`, `/` (integer division), `*`, `%` - Comparasions: `==`, `>`, `<`, `>=`, `<=` - Bool - Literals: `True`, `False` - Operations: `==`, `&&`, `||`, `!` Note: - No floating point numbers in Aiken ---- #### Primitive Types - ByteArray: an array of bytes (integers ranging from `0` to `255`) - Literals: - `"foo"` - `#[102, 111, 111]` - `#[0x66, 0x6f, 0x6f]` - `#"666f6f"` ---- #### Primitive Types - Tuple: grouping values, each can have a different type - `(10, "hello")` (Int, ByteArray) - `(1, 4, [0])` (Int, Int, List<Int>) ```rust let point = (14, 42, 1337, 0) let a = point.1st let b = point.2nd let c = point.3rd let d = point.4th (c, d, b, a) // (1337, 0, 42, 14) ``` ---- #### Primitive Types - List: ordered collections of values of the same type ``` let x = [2, 3] // all data structures are immutable let y = [1, ..x] // inserting at the front of list x x // [2, 3] y // [1, 2, 3] ``` ---- #### Primitive Types - Dict: ordered set of key-value pairs ``` let result = dict.new() |> dict.insert(key: "a", value: 100) |> dict.insert(key: "b", value: 200) |> dict.delete(key: "a") |> dict.to_pairs() result == [Pair("b", 200)] ``` --- ## Functions - Named functions & Anonymous functions - Labeled Arguments - Pipe Operator - Function capturing - Generic functions ---- #### User-defined function ```rust /// Document here /// Named function, with type annotations fn add(x: Int, y: Int) -> Int { x + y // no explicit return keyword } fn run() { let add = fn(x, y) { x + y } // anonymous function add(1, 2) } ``` ---- #### Labeled arguments ```rust fn replace(self: String, pattern: String, replacement: String) { // ... } replace(self: @"A,B,C", pattern: @",", replacement: @" ") // Labeled arguments can be given in any order replace(pattern: @",", replacement: @" ", self: @"A,B,C") // Positional arguments and labels can be mixed replace(@"A,B,C", pattern: @",", replacement: @" ") ``` ---- #### Pipe Operator Pipe operator: `|>` - passing the result of one function to the arguments of another function. ```rust string_builder.to_string( string_builder.reverse( string_builder.from_string(s) ) ) ``` ```rust s |> string_builder.from_string |> string_builder.reverse |> string_builder.to_string ``` ---- #### Function capturing ```rust fn add(x: Int , y: Int ) -> Int { x + y } fn run() { // This is the same as add(add(add(1, 3), 6), 9) // `_` indicates where the argument should be passed. 1 |> add(_, 3) |> add(_, 6) |> add(_, 9) // shorthand 1 |> add(3) |> add(6) |> add(9) } ``` Note: Backpassing: TDB ---- #### Generic functions - Functions that are generic over multiple types ```rust /// Type variable `a` is used to represent /// any possible type. fn list_of_two(my_value: a) -> List<a> { [my_value, my_value] } ``` Note: Similar to function template in C/C++ --- ## Unit Tests with aiken ```rust /// To write a unit test, use the `test` keyword: test foo() { 1 + 1 == 2 // a test returns a boolean } ``` ---- #### Unit Tests with aiken https://danolearn.com/en/ucode/add-one-59120 ```rust fn add_one(n: Int) -> Int { n + 1 } test add_one_1() { add_one(0) == 1 } test add_one_2() { add_one(-42) == -41 } ``` ---- #### Unit Tests with aiken ###### https://danolearn.com/en/ucode/add-one-59120 <img src="https://cdn.ucode.vn/uploads/1/upload/ToQSEmHr.png" class="element-center content-img" /> --- ## Control Flow - Blocks - Branching with `if else` - Matching with `when {expr} is` - Basic matching - Destructuring ---- #### Blocks Every block in Aiken is an expression with the value of the **last expression** in that block. ```rust let value: Bool = { "Hello" 42 + 12 False } value == False ``` ---- #### Branching with `if else` ```rust fn fibonacci(n: Int) -> Int { if n == 0 { 0 } else if n == 1 { 1 } else { fibonacci(n-2) + fibonacci(n-1) } } ``` Note: While it may look like an imperative instruction: if this then do that or else do that, it is in fact one single expression. This means, in particular, that the return types of both branches have to match. ---- #### Matching with `when {expr} is` ``` when a is { 0 -> "Zero" 1 -> "One" 2 -> "Two" n -> "Some other number" // This matches anything } ``` ---- #### Destructuring ``` when xs is { [] -> "This list is empty" [a] -> "This list has 1 element" [a, b] -> "This list has 2 elements" _other -> "This list has more than 2 elements" } ``` Note: A when *expr* is expression can be used to destructure values that contain other values, such as tuples and lists. --- ## Modules - Modules & Import - Some built-in modules - `aiken/math` - `aiken/int` - `aiken/interval` - `aiken/list` - `aiken/bytearray` - `aiken/dict` ---- #### Module imports - Module: bundle of functions and types. Modules are imported using the keyword `use`. ```rust= use unix/dog use animal/dog as kitty // named import ``` - Unqualified import ```rust use animal/dog.{Dog, stroke} pub fn foo() { let puppy = Dog { name: "Zeus" } stroke(puppy) } ``` ---- #### Built-in modules - References: https://aiken-lang.github.io/stdlib/ - `aiken/math` - `abs(self: Int) -> Int` - `gcd(x: Int, y: Int) -> Int` - `max(a: Int, b: Int) -> Int` - `min(a: Int, b: Int) -> Int` - `pow(self: Int, e: Int) -> Int` - `sqrt(self: Int) -> Option<Int>` - ... - ... --- ## Practice Exercises P1 https://danolearn.com/en/course-study/blockchain-crash-course-from-fundamentals-to-dapps-development-1462?l=54427 --- ## Working with `list` - count, length, all, any - Indexing & Slicing - Searching & Sorting - Filter & Map - Reducing (Folding) ---- #### count, length ```rust length(self: List<a>) -> Int count(self: List<a>, predicate: fn(a) -> Bool) -> Int ``` ```rust list.length([]) == 0 list.length([1, 2, 3]) == 3 list.count([], fn(a) { a > 2}) == 0 list.count([1, 2, 3], fn(a) { a >= 2 }) == 2 list.count([1, 2, 3], fn(a) { a > 5 }) == 0 ``` ---- #### all, any ```rust all(self: List<a>, predicate: fn(a) -> Bool) -> Bool any(self: List<a>, predicate: fn(a) -> Bool) -> Bool ``` ```rust list.all([], fn(n) { n > 0 }) == True list.all([1, 2, 3], fn(n) { n > 0 }) == True list.all([1, 2, 3], fn(n) { n == 2 }) == False ``` ---- #### Indexing ```rust // 0-based index at(self: List<a>, index: Int) -> Option<a> head(self: List<a>) -> Option<a> last(self: List<a>) -> Option<a> push(self: List<a>, elem: a) -> List<a> delete(self: List<a>, elem: a) -> List<a> ``` ```rust use aiken/option list.at([1, 2, 3], 1) == Some(2) list.at([1, 2, 3], 42) == None list.head([1, 2, 3]) == Some(1) list.last([1, 2, 3]) == Some(3) // insert in front list.push([2, 3], 1) == [1, ..[2, 3]] == [1, 2, 3] // Remove the first occurrence of 1 list.delete([1, 2, 3, 1], 1) == [2, 3, 1] list.delete([1, 2, 3], 14) == [1, 2, 3] option.or_else(list.at([1, 2, 3], 1), 0) == 2 ``` ---- #### Slicing ```rust concat(left: List<a>, right: List<a>) -> List<a> slice(self: List<a>, from: Int, to: Int) -> List<a> init(self: List<a>) -> Option<List<a>> tail(self: List<a>) -> Option<List<a>> ``` ```rust list.concat([1, 2, 3], [4, 5, 6]) == [1, 2, 3, 4, 5, 6] list.slice([1, 2, 3, 4, 5, 6], from: 2, to: 4) == [3, 4, 5] list.slice([1, 2, 3, 4, 5, 6], from: -2, to: -1) == [5, 6] list.init([1, 2, 3]) == Some([1, 2]) list.tail([1, 2, 3]) == Some([2, 3]) ``` ---- #### Slicing ```rust take(self: List<a>, n: Int) -> List<a> drop(self: List<a>, n: Int) -> List<a> span(self: List<a>, n: Int) -> (List<a>, List<a>) ``` ```rust list.take([1, 2, 3], 2) == [1, 2] list.drop([1, 2, 3], 2) == [3] // drop first 2 items // span(xs, n) == (take(xs, n), drop(xs, n)) span([1, 2, 3, 4, 5], 3) == ([1, 2, 3], [4, 5]) ``` ---- #### Searching ```rust has(self: List<a>, elem: a) -> Bool find(self: List<a>, predicate: fn(a) -> Bool) -> Option<a> index_of(self: List<a>, elem: a) -> Option<Int> ``` ```rust list.has([1, 2, 3], 2) == True list.has([1, 2, 3], 14) == False // find first item that >= 2 list.find([1, 2, 3], fn(x) { x >= 2 }) == Some(2) list.find([4, 5, 6], fn(x) { x == 2 }) == None list.index_of([1, 7, 3], 4) == None list.index_of([1, 0, 9, 6], 6) == 3 ``` ---- #### Sorting ```rust= sort(self: List<a>, compare: fn(a, a) -> Ordering) -> List<a> ``` ```rust use aiken/int sort([3, 1, 4, 0, 2], int.compare) == [0, 1, 2, 3, 4] sort([1, 2, 3], int.compare) == [1, 2, 3] ``` ---- #### Filtering ```rust filter(self: List<a>, predicate: fn(a) -> Bool) -> List<a> partition(self: List<a>, predicate: fn(a) -> Bool) -> (List<a>, List<a>) drop_while(self: List<a>, predicate: fn(a) -> Bool) -> List<a> take_while(self: List<a>, predicate: fn(a) -> Bool) -> List<a> ``` ```rust list.filter([1, 2, 3], fn(x) { x >= 2 }) == [2, 3] list.partition([1, 2, 3, 4], fn(x) { x % 2 == 0 }) == ([2, 4], [1, 3]) list.drop_while([1, 2, 3], fn(x) { x <= 2 }) == [3] list.take_while([1, 2, 3], fn(x) { x <= 2 }) == [1, 2] ``` ---- #### Mapping ```rust map(self: List<a>, with: fn(a) -> result) -> List<result> map2(self: List<a>, bs: List<b>, with: fn(a, b) -> result) -> List<result> map3( self: List<a>, bs: List<b>, cs: List<c>, with: fn(a, b, c) -> result, ) -> List<result> ``` ```rust list.map([1, 2, 3, 4], fn(n) { n + 1 }) == [2, 3, 4, 5] list.map2([1, 2, 3], [1, 2], fn(a, b) { a + b }) == [2, 4] list.map3( [1, 2, 3], [1, 2], [1, 2, 3], fn(a, b, c) { a + b + c } ) == [3, 6] ``` ---- #### Reducing (Folding) - Reducing/folding: reducing the data in the list into a **single value** - Popular examples: `sum`, `product`, `max`, `min`, `concat_all` - That **single value** can also another list: `reverse` - The direction of the reducing makes sense: **from-left-to-right** vs **from-right-to-left** - Examples: https://danolearn.com/en/ucode/list-reducing-59132 ---- #### Reducing (Folding) ```rust foldl(self: List<a>, zero: b, with: fn(a, b) -> b) -> b ``` ```rust // (3 + (2 + (1 + 0))) list.foldl([1, 2, 3], 0, fn(n, total) { n + total }) == 6 // [3, ..[2, ..[1, ..[]]]] list.foldl([1, 2, 3], [], fn(x, xs) { [x, ..xs] }) == [3, 2, 1] ``` ---- #### Reducing (Folding) ```rust foldr(self: List<a>, zero: b, with: fn(a, b) -> b) -> b ``` ```rust // (1 + (2 + (3 + 0))) list.foldr([1, 2, 3], 0, fn(n, total) { n + total }) == 6 // [1, ..[2, ..[3, ..[]]]] list.foldr([1, 2, 3], [], fn(x, xs) { [x, ..xs] }) == [1, 2, 3] ``` ---- #### Reducing (Folding) ```rust reduce(self: List<a>, zero: b, with: fn(b, a) -> b) -> b ``` ```rust list.reduce([#[1], #[2], #[3]], #[0], bytearray.concat) == #[0, 1, 2, 3] ``` --- ## Practice Exercises P2 https://danolearn.com/en/course-study/blockchain-crash-course-from-fundamentals-to-dapps-development-1462?l=54429 --- ## Working with `bytearray` & `dict` - https://aiken-lang.github.io/stdlib/aiken/bytearray.html - https://aiken-lang.github.io/stdlib/aiken/dict.html --- ## Practice Exercises P3 https://danolearn.com/en/course-study/blockchain-crash-course-from-fundamentals-to-dapps-development-1462?l=54430 --- ## Aiken development toolchain - For learning purpose: danolearn.com - Local environment: https://aiken-lang.org/installation-instructions --- # The End thuc.nc@teko.vn ---
{"contributors":"[{\"id\":\"476f9158-9a39-4a2d-bb09-ce08dd7eb978\",\"add\":18767,\"del\":2968}]","title":"Aiken programming language tutorial","description":"View the slide with \"Slide Mode\".","slideOptions":"{\"theme\":\"white\"}"}
    1877 views