# Causal Inference Study Group
[toc]
## Sessions
* **Join online session**: https://join.skype.com/Ib34YuQDNJyr
* **Recurrence**: Every two weeks, **on Wednesday, from 5:00 to 6:30 PM (CET)** / 8:00 AM (PT)
* :calendar: [**Calendar**](https://shortest.link/9mOa)
* [Subscribe via Google Calendar](https://calendar.google.com/calendar/u/0?cid=ZjkwYjdlNTllNmYyNDcxNDJiZDMwMzUwYWRjMmNlMGNmYTc3MTExNDg5YmE0Yzc3OWM4NTMwNmQxMDVmOWI2Y0Bncm91cC5jYWxlbmRhci5nb29nbGUuY29t) or via [iCal](https://calendar.google.com/calendar/ical/f90b7e59e6f247142bd30350adc2ce0cfa77111489ba4c779c85306d105f9b6c%40group.calendar.google.com/public/basic.ics
).
* :spiral_note_pad: [Planning](https://docs.google.com/spreadsheets/d/1qokXb9AVXxXLmcokoowgv65UC4i6mlbMIwZOkuZsOqU/)
* [Overleaf](https://www.overleaf.com/5181667198rmznzwtwmtpz)
* [Whiteboard](https://jamboard.google.com/d/1kPnFcX3JLGANTq4lVKp52BmPnGcjQ9Rr6Do_bKf1uv8/edit)
### November 16th, 2022
* **Chapters**:
- **1. Statistical and Causal Models** [[PDF](https://drive.google.com/file/d/1tk-s0YdojI9789SDwvXkdmN7rVhsZTeT/view)]
- **2. Assumptions for Causal Inference** [[PDF](https://drive.google.com/file/d/1Ojn0_DQlvbBcIvEzaWroOeaxyNRHzwVG/view)]
- :film_projector: [Slides](https://drive.google.com/file/d/1H8QQwAxLlQRuIBjsMC5GuQt97U_-EQ3p/view)
### December 7th, 2022
* **Chapter**
- **3. Cause-Effet Models** [[PDF]](https://drive.google.com/file/d/1EC-PZkohy_PTKM9esJapL6vwICDfKk1W/view)
- :film_projector: [Slides](https://drive.google.com/file/d/1XQA4Ri4Xj8HjF5kugYHvTM3SwdaQdqdL/view)
### December 21st, 2022
* **Chapter**
- **4. Learning Cause-Effect Models** [[PDF]](https://drive.google.com/file/d/1kmqpCfoIlE6gb1xXX2y6iD3J44nXUOau/view)
- 📽️ [Slides](https://drive.google.com/file/d/1E7A2j1RRBnBakfpWEdYpu3MMC6EkxGCr/view)
### January 18th, 2023
* **Chapter**
- **6. Multivariate Causal Models (First part)** [[PDF]](https://drive.google.com/file/d/10Qj6K852Ro2985uAsUY5pieguANp3RDE/view)
- 📽️ [Slides](https://drive.google.com/file/d/1_HHH3But4RM16nECpAIHD-KjuAqFOnBV/view)
### February 1st, 2023
* **Chapter**
- **6. Multivariate Causal Models (Second part)** [[PDF]](https://drive.google.com/file/d/10Qj6K852Ro2985uAsUY5pieguANp3RDE/view)
- 📽️ [Slides](https://drive.google.com/file/d/1PIITzMycT2oUtJ0fApLpdcwr4xSgFdkt/view)
### February 15th, 2023
* **Chapter**
- **7. Learning Multivariate Causal Models** [[PDF]](https://drive.google.com/file/d/1o5CL9hp8x6q_ttOLxGbKf4gfn4rcIdU2/view)
- 📽️ [Slides](https://drive.google.com/file/d/1T8DHexUO_PunvtpqyPdBE5Ha1ERxgf-h/view)
### March 1st, 2023
* **Chapters**
- **5. Connections to Machine Learning, I** [[PDF]](https://drive.google.com/file/d/1DLnbC_mmJI2LZcsYuh_niOGeMwwlJx1k/view)
- 📽️ [Slides](https://drive.google.com/file/d/16CqnCIO-6fFqNWvn2YozFvh-N1QU9M5X/view)
### March 15th, 2023
* **Chapter**
- **9. Hidden Variables** [[PDF]](https://drive.google.com/file/d/1NksHXFvvar22zaYVEHLshkhB_9bQMfje/view)
- 📽️ [Slides](https://drive.google.com/file/d/1sbCKuXLFKk1V82yviG8lnPtPOkdIHagb/view)
### April 12th, 2023
* **Chapter**
- **8. Connections to Machine Learning, II** [[PDF]](https://drive.google.com/file/d/1Yd5Uz97_dx5WwQ4k8Y7pQxTxXkp_7NqX/view)
- 📽️ [Slides](https://drive.google.com/file/d/1YCNNorSEnO2-NiKhfS1jWL12nQ7i2yw7/view)
### April 26th, 2023
* **Chapter**
- **10. Time Series** [[PDF]](https://drive.google.com/file/d/1YzS68qw7G06S_Rr_amBMmmBqTINW9nnX/view)
- 📽️ [Slides](https://drive.google.com/file/d/1kweiZsyPOdYBZUg4-SDkFqROnKBx-Yds/view)
## References
:closed_book: Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. [Elements of causal inference: foundations and learning algorithms](https://library.oapen.org/handle/20.500.12657/26040). The MIT Press, 2017.
:blue_book: Guyon, Isabelle, Alexander Statnikov, and Berna Bakir Batu, eds. [Cause effect Pairs in machine learning](https://link.springer.com/book/10.1007/978-3-030-21810-2). Springer, 2019.
:notebook: Guyon, Isabelle, Dominik Janzing, and Bernhard Schölkopf. [Causality: Objectives and Assessment Challenges in Machine Learning](http://www.causality.inf.ethz.ch/ciml/CiML-v4-book.pdf), Volume 4.
:notebook_with_decorative_cover: Popescu, Florin, and Isabelle Guyon. [Causality in Time Series: Challenges in Machine Learning](http://www.causality.inf.ethz.ch/ciml/CiML-v5-book.pdf), Volume 5.
###### tags: `causal inference` `study group`