# 3-4 熱門 MCP 伺服器實戰指南
回到白皮書首頁:[MCP 全方位技術白皮書](/@thc1006/mcp-whitepaper-home)
---
## 2025年最實用的 MCP 伺服器深度實戰
在 MCP 生態快速發展的 2025 年,選對伺服器往往比寫對代碼更重要。本章將深入解析 15 個最熱門、最實用的 MCP 伺服器,提供從安裝配置到企業級部署的完整實戰指南。
## 企業級資料平台類
### 1. K2view MCP Server:企業資料虛擬化之王
**為什麼選擇 K2view?**
K2view 解決了企業最頭痛的問題:**資料孤島**。它能夠即時整合跨多個系統的資料,而不需要傳統的 ETL 過程。
**核心能力:**
- **即時資料虛擬化**:不移動資料,直接虛擬整合
- **實體級資料存取**:以客戶、產品等實體為中心組織資料
- **跨系統安全存取**:統一的權限控制
- **企業級效能**:支援大規模並行處理
**實戰配置:**
```python
# K2view MCP 配置範例
class K2viewMCPConfig:
def __init__(self):
self.config = {
'server_url': 'https://k2view.company.com:9443',
'authentication': {
'method': 'oauth2',
'client_id': 'mcp-client',
'client_secret': '${K2VIEW_CLIENT_SECRET}',
'token_url': 'https://auth.company.com/oauth/token'
},
'data_sources': {
'crm': 'salesforce_connector',
'erp': 'sap_connector',
'warehouse': 'snowflake_connector',
'logs': 'elasticsearch_connector'
},
'entities': [
'Customer360',
'Product360',
'Order360',
'Campaign360'
]
}
async def setup_customer_360_view(self):
"""設定客戶360度視圖"""
return {
'entity': 'Customer',
'data_sources': [
'CRM.customers',
'ERP.customer_accounts',
'Web.user_profiles',
'Support.tickets',
'Marketing.campaigns'
],
'real_time_sync': True,
'privacy_controls': 'GDPR_compliant'
}
```
**台灣企業應用案例:**
某大型電信公司使用 K2view 整合客戶資料:
```
整合前:查詢客戶資料需要登入 5 個不同系統
整合後:透過 AI 一次性獲得客戶完整視圖
效果:客服處理時間從 15 分鐘縮短到 2 分鐘
```
### 2. Vectara RAG Server:語義搜尋專家
**核心優勢:**
- **零設定 RAG**:開箱即用的檢索增強生成
- **多語言支援**:包含繁體中文最佳化
- **即時索引**:資料更新立即反映在搜尋結果
**實戰部署:**
```python
class VectaraRAGImplementation:
def __init__(self):
self.vectara_config = {
'customer_id': '${VECTARA_CUSTOMER_ID}',
'corpus_id': '${VECTARA_CORPUS_ID}',
'api_key': '${VECTARA_API_KEY}',
'language': 'zh-TW' # 繁體中文最佳化
}
async def setup_knowledge_base(self, documents):
"""建立知識庫"""
knowledge_base = {
'company_policies': {
'documents': ['employee_handbook.pdf', 'it_policy.docx'],
'language': 'zh-TW',
'chunk_size': 512,
'overlap': 50
},
'technical_docs': {
'documents': ['api_documentation/', 'system_manuals/'],
'language': 'en',
'metadata': {'department': 'engineering'}
},
'customer_faqs': {
'documents': ['faq_database.json'],
'language': 'zh-TW',
'auto_update': True
}
}
return await self._index_documents(knowledge_base)
async def semantic_search(self, query, context=None):
"""語義搜尋實現"""
search_params = {
'query': query,
'num_results': 10,
'language': 'zh-TW',
'filters': context or {},
'rerank': True,
'highlight': True
}
results = await self._execute_search(search_params)
return self._format_results(results)
```
**實際應用場景:**
台灣某大型法律事務所的知識管理系統:
```
場景:律師詢問「勞基法關於加班費的最新規定」
過程:
1. Vectara 搜尋相關法條和判例
2. AI 整合最新修法內容
3. 產生包含引用來源的專業回答
效果:法律研究時間從 3 小時縮短到 15 分鐘
```
## 開發者工具與整合類
### 3. GitHub MCP Server:開發協作神器
**官方品質保證:**
- Anthropic 官方維護
- 完整的 GitHub API 支援
- 企業級安全標準
**完整功能清單:**
```python
class GitHubMCPCapabilities:
def __init__(self):
self.tools = {
'repository_management': [
'create_repository',
'list_repositories',
'get_repository_info',
'update_repository_settings'
],
'issue_tracking': [
'create_issue',
'list_issues',
'update_issue',
'close_issue',
'add_issue_comment'
],
'pull_requests': [
'create_pull_request',
'list_pull_requests',
'review_pull_request',
'merge_pull_request'
],
'code_analysis': [
'get_file_content',
'search_code',
'get_commit_history',
'analyze_code_changes'
],
'project_management': [
'manage_projects',
'track_milestones',
'assign_tasks',
'generate_reports'
]
}
```
**企業級配置:**
```yaml
# GitHub MCP 企業配置
github_mcp:
authentication:
method: "github_app"
app_id: "${GITHUB_APP_ID}"
private_key_path: "/secrets/github-app-key.pem"
installation_id: "${GITHUB_INSTALLATION_ID}"
permissions:
repositories: "write"
issues: "write"
pull_requests: "write"
contents: "read"
metadata: "read"
security:
rate_limiting: true
audit_logging: true
ip_whitelist: ["10.0.0.0/8", "172.16.0.0/12"]
enterprise_features:
saml_sso: true
advanced_security: true
dependency_insights: true
```
**實戰用例:自動化 PR 審查**
```python
async def automated_pr_review(pr_number, repository):
"""自動化 PR 審查流程"""
# 1. 獲取 PR 詳情
pr_info = await github_mcp.get_pull_request(repository, pr_number)
# 2. 分析代碼變更
code_changes = await github_mcp.get_pr_changes(repository, pr_number)
# 3. 執行安全掃描
security_scan = await security_scanner.scan_changes(code_changes)
# 4. 檢查測試覆蓋率
test_coverage = await coverage_analyzer.analyze(code_changes)
# 5. 生成 AI 審查意見
review_comments = await ai_reviewer.generate_review(
code_changes,
security_scan,
test_coverage
)
# 6. 自動提交審查
if security_scan.passed and test_coverage > 80:
await github_mcp.approve_pull_request(repository, pr_number)
else:
await github_mcp.request_changes(repository, pr_number, review_comments)
```
### 4. Zapier MCP Server:自動化工作流程大師
**6000+ 應用整合:**
Zapier MCP 讓 AI 能夠操作超過 6000 個不同的應用程式,實現真正的工作流程自動化。
**核心優勢:**
- **即插即用**:無需 API 文檔,AI 自動理解應用功能
- **即時同步**:資料變更立即觸發相關動作
- **錯誤處理**:自動重試和異常通知
**企業工作流程範例:**
```python
class ZapierWorkflowAutomation:
def __init__(self):
self.zapier_mcp = ZapierMCPClient()
async def setup_customer_onboarding_flow(self):
"""客戶入職自動化流程"""
workflow = {
'trigger': {
'app': 'salesforce',
'event': 'new_customer_created',
'conditions': {'status': 'active', 'plan': 'enterprise'}
},
'actions': [
{
'app': 'slack',
'action': 'send_channel_message',
'channel': '#customer-success',
'message': '新企業客戶 {{customer.name}} 已註冊'
},
{
'app': 'notion',
'action': 'create_page',
'database': 'customer_onboarding',
'properties': {
'customer_name': '{{customer.name}}',
'assigned_csm': '{{auto_assign_csm}}',
'onboarding_status': 'started'
}
},
{
'app': 'gmail',
'action': 'send_email',
'to': '{{customer.email}}',
'template': 'welcome_enterprise_customer',
'attachments': ['onboarding_guide.pdf']
},
{
'app': 'calendar',
'action': 'schedule_meeting',
'attendees': ['{{customer.email}}', '{{assigned_csm.email}}'],
'title': '客戶入職歡迎會議',
'duration': 60,
'time_preference': 'next_business_day'
}
]
}
return await self.zapier_mcp.create_workflow(workflow)
```
**台灣中小企業應用:**
某台灣製造業公司的訂單處理自動化:
```
1. 客戶下單 (Shopify) →
2. 檢查庫存 (ERP系統) →
3. 安排生產 (MES系統) →
4. 通知物流 (物流API) →
5. 發送確認信 (Gmail) →
6. 更新財務 (會計軟體)
結果:訂單處理時間從 2 天縮短到 2 小時
```
## 企業系統整合類
### 5. Salesforce MCP Server:CRM 資料智慧化
**深度 CRM 整合:**
```python
class SalesforceMCPIntegration:
def __init__(self):
self.sf_config = {
'instance_url': 'https://company.my.salesforce.com',
'client_id': '${SALESFORCE_CLIENT_ID}',
'client_secret': '${SALESFORCE_CLIENT_SECRET}',
'username': '${SALESFORCE_USERNAME}',
'password': '${SALESFORCE_PASSWORD}',
'security_token': '${SALESFORCE_SECURITY_TOKEN}'
}
async def ai_powered_lead_scoring(self, lead_id):
"""AI 驅動的潛在客戶評分"""
# 獲取潛在客戶資料
lead_data = await self.get_lead(lead_id)
# 獲取相關的歷史資料
similar_leads = await self.find_similar_leads(lead_data)
conversion_patterns = await self.analyze_conversion_patterns(similar_leads)
# AI 分析和評分
ai_score = await self.ai_analyzer.score_lead({
'lead_data': lead_data,
'historical_patterns': conversion_patterns,
'market_conditions': await self.get_market_data(),
'company_priorities': await self.get_sales_priorities()
})
# 更新 Salesforce 記錄
await self.update_lead(lead_id, {
'AI_Score__c': ai_score.score,
'AI_Confidence__c': ai_score.confidence,
'Recommended_Actions__c': ai_score.recommended_actions,
'Next_Best_Action__c': ai_score.next_best_action
})
return ai_score
```
**實際應用案例:**
台灣某 B2B 軟體公司的銷售智能化:
```
場景:銷售人員詢問「這週應該優先跟進哪些潛在客戶?」
AI 分析過程:
1. 掃描所有活躍潛在客戶
2. 分析歷史成交模式
3. 考慮當前市場環境
4. 評估客戶參與度
5. 計算成交機率
輸出結果:
- 高優先級客戶清單(成交機率>70%)
- 每個客戶的建議跟進策略
- 預期成交時間和金額
- 需要注意的風險因素
```
### 6. Slack MCP Server:團隊協作增強器
**智慧團隊協作:**
```python
class SlackMCPWorkspace:
def __init__(self):
self.slack_config = {
'bot_token': '${SLACK_BOT_TOKEN}',
'app_token': '${SLACK_APP_TOKEN}',
'signing_secret': '${SLACK_SIGNING_SECRET}'
}
async def intelligent_meeting_scheduler(self, request):
"""智慧會議安排"""
# 解析會議需求
meeting_request = await self.parse_meeting_request(request)
# 檢查參與者行事曆
attendees_availability = await self.check_calendars(
meeting_request.attendees
)
# 分析最佳會議時間
optimal_times = await self.ai_scheduler.find_optimal_slots(
attendees_availability,
meeting_request.duration,
meeting_request.preferences
)
# 在 Slack 中提出建議
message = await self.format_meeting_suggestions(optimal_times)
await self.send_message(meeting_request.channel, message)
# 等待確認並自動排程
return await self.wait_for_confirmation_and_schedule()
async def project_status_ai_summary(self, project_channel):
"""專案狀態 AI 摘要"""
# 收集專案相關訊息
recent_messages = await self.get_channel_messages(
project_channel,
days=7
)
# 分析任務進度
task_updates = await self.extract_task_updates(recent_messages)
# 識別阻礙和風險
blockers = await self.identify_blockers(recent_messages)
# 生成 AI 摘要
summary = await self.ai_summarizer.generate_project_summary({
'task_updates': task_updates,
'blockers': blockers,
'team_sentiment': await self.analyze_team_sentiment(recent_messages),
'timeline_status': await self.check_timeline_status(project_channel)
})
return summary
```
### 7. Notion MCP Server:知識管理中樞
**智慧知識庫:**
```python
class NotionKnowledgeBase:
def __init__(self):
self.notion_config = {
'api_key': '${NOTION_API_KEY}',
'version': '2022-06-28',
'databases': {
'company_wiki': '${WIKI_DATABASE_ID}',
'meeting_notes': '${MEETINGS_DATABASE_ID}',
'project_docs': '${PROJECTS_DATABASE_ID}',
'procedures': '${PROCEDURES_DATABASE_ID}'
}
}
async def ai_powered_documentation(self, topic, context=None):
"""AI 驅動的文件生成"""
# 搜尋相關已有文件
existing_docs = await self.search_related_documents(topic)
# 分析文件結構模式
doc_patterns = await self.analyze_documentation_patterns(existing_docs)
# 獲取相關的專案上下文
project_context = context or await self.get_relevant_project_context(topic)
# AI 生成文件大綱
outline = await self.ai_writer.generate_outline({
'topic': topic,
'existing_docs': existing_docs,
'patterns': doc_patterns,
'context': project_context
})
# 創建 Notion 頁面結構
page = await self.create_structured_page(outline)
# AI 填充內容
content = await self.ai_writer.generate_content(outline, project_context)
await self.populate_page_content(page.id, content)
return page
async def smart_meeting_notes_processing(self, meeting_recording):
"""智慧會議記錄處理"""
# 轉錄會議音檔
transcript = await self.transcribe_meeting(meeting_recording)
# AI 分析會議內容
analysis = await self.ai_analyzer.analyze_meeting({
'transcript': transcript,
'participants': await self.identify_participants(transcript),
'agenda': await self.extract_agenda_items(transcript)
})
# 自動建立 Notion 會議記錄
meeting_page = await self.create_meeting_notes_page({
'title': analysis.meeting_title,
'date': analysis.meeting_date,
'participants': analysis.participants,
'summary': analysis.executive_summary,
'action_items': analysis.action_items,
'decisions': analysis.decisions_made,
'next_steps': analysis.next_steps
})
# 自動分派行動項目
for action_item in analysis.action_items:
await self.assign_action_item(action_item)
return meeting_page
```
## 雲端基礎設施類
### 8. Supabase MCP Server:現代化後端服務
**無伺服器 Postgres 強化:**
```python
class SupabaseMCPStack:
def __init__(self):
self.supabase_config = {
'url': '${SUPABASE_URL}',
'anon_key': '${SUPABASE_ANON_KEY}',
'service_role_key': '${SUPABASE_SERVICE_ROLE_KEY}',
'features': {
'auth': True,
'realtime': True,
'storage': True,
'edge_functions': True
}
}
async def ai_powered_database_optimization(self):
"""AI 驅動的資料庫最佳化"""
# 分析查詢效能
query_performance = await self.analyze_query_performance()
# AI 建議索引最佳化
index_recommendations = await self.ai_optimizer.suggest_indexes(
query_performance
)
# 自動套用安全的最佳化
safe_optimizations = [
opt for opt in index_recommendations
if opt.risk_level == 'low'
]
for optimization in safe_optimizations:
await self.apply_optimization(optimization)
return {
'applied_optimizations': safe_optimizations,
'pending_review': [
opt for opt in index_recommendations
if opt.risk_level in ['medium', 'high']
],
'performance_improvement': await self.measure_improvement()
}
async def realtime_ai_analytics(self, table_name):
"""即時 AI 分析"""
# 設定即時資料流
realtime_stream = await self.setup_realtime_subscription(table_name)
# AI 分析資料流
async for data_change in realtime_stream:
analysis = await self.ai_analyzer.analyze_change({
'change_type': data_change.eventType,
'new_data': data_change.new,
'old_data': data_change.old,
'table': table_name
})
# 觸發相關動作
if analysis.requires_action:
await self.trigger_automated_response(analysis)
return realtime_stream
```
### 9. Cloudflare MCP Server:全球邊緣運算
**邊緣 AI 部署:**
```python
class CloudflareMCPEdge:
def __init__(self):
self.cf_config = {
'account_id': '${CLOUDFLARE_ACCOUNT_ID}',
'api_token': '${CLOUDFLARE_API_TOKEN}',
'zone_id': '${CLOUDFLARE_ZONE_ID}',
'worker_subdomain': '${WORKER_SUBDOMAIN}'
}
async def deploy_global_ai_endpoints(self):
"""部署全球 AI 端點"""
edge_locations = [
'taipei', 'singapore', 'tokyo', 'seoul',
'sydney', 'los-angeles', 'london', 'frankfurt'
]
deployment_results = {}
for location in edge_locations:
# 部署 MCP Worker 到邊緣位置
worker = await self.deploy_mcp_worker(location, {
'model': 'claude-3-haiku', # 快速回應模型
'max_tokens': 4000,
'timeout': 30000, # 30 秒
'memory': '512MB'
})
# 設定智能路由
await self.configure_smart_routing(location, worker.url)
deployment_results[location] = {
'worker_url': worker.url,
'latency': await self.test_latency(worker.url),
'status': 'active'
}
return deployment_results
async def intelligent_cache_management(self):
"""智能快取管理"""
# AI 分析快取效率
cache_analytics = await self.analyze_cache_performance()
# 預測熱門內容
predicted_hot_content = await self.ai_predictor.predict_popular_content(
cache_analytics.access_patterns
)
# 主動預載內容
for content in predicted_hot_content:
await self.preload_to_edge_cache(content)
# 清理冷內容
cold_content = await self.identify_cold_content()
for content in cold_content:
await self.purge_from_cache(content)
return {
'cache_hit_rate_improvement': cache_analytics.improvement,
'preloaded_content': len(predicted_hot_content),
'purged_content': len(cold_content)
}
```
## 專業領域應用類
### 10. Google Calendar MCP:智慧行程管理
**AI 行程最佳化:**
```python
class GoogleCalendarMCPAI:
def __init__(self):
self.calendar_config = {
'credentials_path': '/secrets/google-calendar-credentials.json',
'scopes': [
'https://www.googleapis.com/auth/calendar',
'https://www.googleapis.com/auth/calendar.events'
]
}
async def ai_schedule_optimization(self, user_id, time_period='week'):
"""AI 行程最佳化"""
# 獲取當前行程
current_schedule = await self.get_user_schedule(user_id, time_period)
# 分析工作模式
work_patterns = await self.analyze_work_patterns(user_id, current_schedule)
# AI 建議最佳化
optimizations = await self.ai_scheduler.optimize_schedule({
'current_schedule': current_schedule,
'work_patterns': work_patterns,
'user_preferences': await self.get_user_preferences(user_id),
'team_availability': await self.get_team_availability(user_id)
})
# 生成最佳化建議
suggestions = {
'meeting_consolidation': optimizations.consolidate_meetings,
'focus_time_blocks': optimizations.focus_blocks,
'break_recommendations': optimizations.break_suggestions,
'commute_optimization': optimizations.location_based_scheduling
}
return suggestions
async def intelligent_meeting_conflict_resolution(self, conflict_event):
"""智慧會議衝突解決"""
# 分析衝突會議的重要性
conflict_analysis = await self.analyze_meeting_importance(conflict_event)
# 尋找替代時間
alternative_slots = await self.find_alternative_slots(
conflict_event.attendees,
conflict_event.duration,
conflict_event.constraints
)
# AI 推薦最佳解決方案
resolution = await self.ai_resolver.recommend_resolution({
'conflict_details': conflict_analysis,
'alternatives': alternative_slots,
'business_impact': await self.assess_business_impact(conflict_event)
})
return resolution
```
## 實戰部署流程
### 快速開始:本地開發環境
**一鍵部署腳本:**
```bash
#!/bin/bash
# MCP 伺服器快速部署腳本
echo "🚀 開始部署 MCP 開發環境..."
# 1. 安裝依賴
npm install -g @modelcontextprotocol/cli
# 2. 建立專案目錄
mkdir mcp-servers && cd mcp-servers
# 3. 初始化常用伺服器
echo "📦 安裝 GitHub MCP Server..."
git clone https://github.com/anthropic/mcp-server-github.git
cd mcp-server-github && npm install && cd ..
echo "📦 安裝 Filesystem MCP Server..."
git clone https://github.com/anthropic/mcp-server-filesystem.git
cd mcp-server-filesystem && npm install && cd ..
echo "📦 安裝 SQLite MCP Server..."
git clone https://github.com/anthropic/mcp-server-sqlite.git
cd mcp-server-sqlite && npm install && cd ..
# 4. 建立配置檔案
cat > claude_desktop_config.json << 'EOF'
{
"mcpServers": {
"github": {
"command": "node",
"args": ["./mcp-servers/mcp-server-github/dist/index.js"],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "your_token_here"
}
},
"filesystem": {
"command": "node",
"args": ["./mcp-servers/mcp-server-filesystem/dist/index.js"],
"env": {
"ALLOWED_DIRECTORIES": "/Users/username/Documents"
}
},
"sqlite": {
"command": "node",
"args": ["./mcp-servers/mcp-server-sqlite/dist/index.js"],
"env": {
"DB_PATH": "./database.sqlite"
}
}
}
}
EOF
echo "✅ MCP 開發環境部署完成!"
echo "請將 claude_desktop_config.json 複製到正確位置:"
echo "macOS: ~/Library/Application Support/Claude/"
echo "Windows: %APPDATA%/Claude/"
```
### 企業級部署:Docker 容器化
**Docker Compose 配置:**
```yaml
# docker-compose.yml
version: '3.8'
services:
mcp-gateway:
build: ./mcp-gateway
ports:
- "8080:8080"
environment:
- JWT_SECRET=${JWT_SECRET}
- OAUTH_CLIENT_ID=${OAUTH_CLIENT_ID}
- OAUTH_CLIENT_SECRET=${OAUTH_CLIENT_SECRET}
depends_on:
- redis
- postgres
networks:
- mcp-network
github-mcp:
build: ./servers/github-mcp
environment:
- GITHUB_APP_ID=${GITHUB_APP_ID}
- GITHUB_PRIVATE_KEY=${GITHUB_PRIVATE_KEY}
- GITHUB_WEBHOOK_SECRET=${GITHUB_WEBHOOK_SECRET}
networks:
- mcp-network
volumes:
- ./secrets:/app/secrets:ro
salesforce-mcp:
build: ./servers/salesforce-mcp
environment:
- SALESFORCE_CLIENT_ID=${SALESFORCE_CLIENT_ID}
- SALESFORCE_CLIENT_SECRET=${SALESFORCE_CLIENT_SECRET}
- SALESFORCE_USERNAME=${SALESFORCE_USERNAME}
- SALESFORCE_PASSWORD=${SALESFORCE_PASSWORD}
networks:
- mcp-network
slack-mcp:
build: ./servers/slack-mcp
environment:
- SLACK_BOT_TOKEN=${SLACK_BOT_TOKEN}
- SLACK_APP_TOKEN=${SLACK_APP_TOKEN}
- SLACK_SIGNING_SECRET=${SLACK_SIGNING_SECRET}
networks:
- mcp-network
redis:
image: redis:7-alpine
volumes:
- redis_data:/data
networks:
- mcp-network
postgres:
image: postgres:15
environment:
- POSTGRES_DB=mcp_gateway
- POSTGRES_USER=mcp_user
- POSTGRES_PASSWORD=${POSTGRES_PASSWORD}
volumes:
- postgres_data:/var/lib/postgresql/data
networks:
- mcp-network
prometheus:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
networks:
- mcp-network
grafana:
image: grafana/grafana
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_PASSWORD=${GRAFANA_PASSWORD}
volumes:
- grafana_data:/var/lib/grafana
networks:
- mcp-network
volumes:
redis_data:
postgres_data:
grafana_data:
networks:
mcp-network:
driver: bridge
```
### 監控與維護
**完整監控堆疊:**
```python
class MCPMonitoringStack:
def __init__(self):
self.monitoring_config = {
'metrics': {
'prometheus': 'http://prometheus:9090',
'grafana': 'http://grafana:3000',
'alertmanager': 'http://alertmanager:9093'
},
'logging': {
'elasticsearch': 'http://elasticsearch:9200',
'kibana': 'http://kibana:5601',
'logstash': 'http://logstash:5044'
},
'tracing': {
'jaeger': 'http://jaeger:16686',
'zipkin': 'http://zipkin:9411'
}
}
async def setup_monitoring_dashboard(self):
"""設定監控儀表板"""
dashboard_panels = {
'server_health': {
'metrics': ['server_uptime', 'response_time', 'error_rate'],
'alert_thresholds': {
'response_time': '>1000ms',
'error_rate': '>5%',
'uptime': '<99%'
}
},
'resource_usage': {
'metrics': ['cpu_usage', 'memory_usage', 'disk_usage'],
'alert_thresholds': {
'cpu_usage': '>80%',
'memory_usage': '>85%',
'disk_usage': '>90%'
}
},
'business_metrics': {
'metrics': ['requests_per_minute', 'active_users', 'tool_usage'],
'visualization': 'time_series'
}
}
return await self.create_grafana_dashboard(dashboard_panels)
```
## 小結:選擇與實施策略
選擇正確的 MCP 伺服器組合是成功的關鍵:
**決策框架:**
1. **業務需求優先**:先確定要解決的問題
2. **技術適配性**:評估與現有系統的整合難度
3. **維護能力**:考慮團隊的技術能力
4. **成本效益**:平衡功能與預算
5. **未來擴展**:預留成長空間
**台灣企業建議組合:**
- **新創公司**:GitHub + Notion + Zapier + Supabase
- **中小企業**:GitHub + Salesforce + Slack + Google Calendar
- **大型企業**:K2view + GitHub + Salesforce + Slack + 客製化 MCP
記住,MCP 的威力在於組合效應。單一伺服器可能只是工具,但多個伺服器的智能協作才能真正釋放 AI 的潛力。
---
**下一頁:** [第四章:突破性應用與創新用例](/s/mcp-chapter-4)