# MATH ## ProbStat 1. Frequentist vs Bayesian ![](https://hackmd.io/_uploads/BktcG4TY3.png =400x)![](https://hackmd.io/_uploads/SkJe7V6Fn.png =400x)![](https://hackmd.io/_uploads/SkIM7N6Kn.png =400x) 2. Covariance and (in)dependent ![](https://hackmd.io/_uploads/HkBCFrTtn.png) 3. Probabilistic and deterministic models ![](https://hackmd.io/_uploads/r1_T9S6Y2.png) 4. Multimodal and multivariate ![](https://hackmd.io/_uploads/ryEzmI6t2.png) 5. Non-Normal Distribution to Normal Distribution [Link](https://aegis4048.github.io/transforming-non-normal-distribution-to-normal-distribution) 6. t-distribution ![](https://hackmd.io/_uploads/B1iqUL6K3.png) [Link](https://datascience.stackexchange.com/questions/62958/when-to-use-t-distribution-instead-of-normal-distribution) 7. Density estimation [Link](http://faculty.washington.edu/yenchic/17Sp_403/Lec7-density.pdf) ## NLP - N-gram model: [link](https://web.stanford.edu/~jurafsky/slp3/3.pdf) - N-gram vs neural net: [link](https://stackoverflow.com/questions/39708567/word-prediction-neural-net-versus-n-gram-approach#:~:text=The%20neural%20net%20will%20perform,predict%20requires%20a%20probability%20calculation.) - Word embedding: [link](https://viblo.asia/p/so-luoc-word-embedding-gDVK2RAeKLj) - Case-sentitive: [link](https://stackoverflow.com/questions/56384231/case-sensitive-entity-recognition) - BLEU and WER: [link](https://viblo.asia/p/tim-hieu-ve-bleu-va-wer-metric-cho-1-so-tac-vu-trong-nlp-Eb85oA16Z2G) - ROUGE: ![](https://hackmd.io/_uploads/BJTrsF0Kn.png =400x)![](https://hackmd.io/_uploads/HyaIoF0Fn.png =400x)![](https://hackmd.io/_uploads/SkTvjY0Fh.png =400x)![](https://hackmd.io/_uploads/rkeYiYAFh.png =400x)