--- title: Quiz 6 tags: Linear algebra GA: G-77TT93X4N1 --- # Quiz 6 * (p.116) 2.14 * (p.169) 2.1(d, e, g) * (e) > Let $U\in\mathcal{L}(V, W)$ be unitary and $V$, $W$ are inner product spaces. > Then $U^*U=I_V$, that is, $U^*=U^{-1}$. > Since the inverse operator is unique, $I_W=UU^{-1}=UU^*$. > Therefore, $U^*$ is also unitary. > > We have use the [lemma: unitary iff $U^*U=I$](https://hackmd.io/@teshenglin/2024LA2_ch5_6) and [uniqueness of inverse operator](https://hackmd.io/@teshenglin/2024LA2_ch1_6). * (p.169) 2.5-2.9 # Quiz 05/22 * [quiz0522](https://drive.google.com/file/d/1D1ulgYcxt6mkCZqMm5QsToNp26gr4UXF/view?usp=sharing)