--- title: Heat conduction problem tags: ODE GA: G-77TT93X4N1 --- # Heat conduction problem > Sec2.3 #14 Consider an insulated box with internal temperature $u(t)$. According to Newton's law of cooling, $u$ satisfies the differential equation $$ \tag{1} \frac{du}{dt} = -k (u-T(t)), $$ where $T(t)$ is the ambient temperature that varies sinusoidally as $$ \tag{2} T(t) = T_0 + T_1\cos(\omega t). $$ ## Linearity Assume $u_0$ and $v$ satisfy $$ \tag{3} \frac{du_0}{dt} +k u_0 = 1, $$ and $$ \tag{4} \frac{du_1}{dt} +k u_1 = \cos(\omega t), $$ respectively, it can be shown easily that $$ \tag{5} u = kT_0u_0 + kT_1 u_1 $$ solves equation (1) with $T(t)$ given by (2). ## solution 1: $u_0$ Multiply both side of (3) by integrating factor $e^{kt}$ we have $$ \tag{6} \frac{d}{dt} \left(e^{kt} u_0\right) = e^{kt}. $$ Therefore, $$ \tag{7} u_0(t) = \frac{1}{k} + c_0 e^{-kt}. $$ ## solution 2: $u_1$ To solve (4), at first, we introduce a complex-valued function $v$ and assume it satisfies $$ \tag{8} \frac{dv}{dt} +k v = e^{i\omega t}. $$ It is clear that $u_1 = \text{real}(v)$. We again multiply both side of (8) by integrating factor $e^{kt}$ to have $$ \tag{9} \frac{d}{dt} \left(e^{kt} v\right) = e^{(k+i\omega)t}. $$ Therefore, $$ \tag{10} v(t) = \frac{1}{k+i\omega}e^{i\omega t} + c_1 e^{-kt}. $$ ### polar representation We further introduce polar representation $$ \tag{11} 1 + i\frac{\omega}{k} = \sqrt{1 + \left(\frac{\omega}{k}\right)^2} \,e^{i\tau}, \quad \tau=\tan^{-1}\left(\frac{\omega}{k}\right), $$ so that $$ \tag{12} v(t) = \frac{1}{k\sqrt{1 + (\omega/k)^2}}e^{i(\omega t-\tau)} + c_1 e^{-kt}. $$ Finally, we take the real part to have $$ \tag{13} u_1(t) = \frac{1}{k\sqrt{1 + (\omega/k)^2}}\cos{(\omega t-\tau)} + c_1 e^{-kt}. $$ ### Cartesian representation In (10), we can also use Cartesian representation to determine its real part. Recall that $$ \tag{14} \frac{1}{k+i\omega} = \frac{1}{k}\left(\frac{1}{1+i(\omega/k)}\right)\left(\frac{1-i(\omega/k)}{1-i(\omega/k)}\right)=\frac{1}{k}\left(\frac{1-i(\omega/k)}{1 + (\omega/k)^2}\right). $$ Plugging-in to (10) to have $$ \tag{15} v(t) = \frac{1}{k}\left(\frac{1-i(\omega/k)}{1 + (\omega/k)^2}\right)\left(\cos{\omega t}+i\sin{\omega t}\right) + c_1 e^{-kt}. $$ So the real part gives $$ \tag{16} u_1 = \frac{1}{k}\frac{1}{1 + (\omega/k)^2}\left(\cos{\omega t} + (\omega/k)\sin{\omega t}\right). $$ We can then recall the trigenometric identity $$ \tag{17} \cos{\omega t} + (\omega/k)\sin{\omega t} = \sqrt{1 + (\omega/k)^2}\cos(\omega t-\tau), \quad \tau=\tan^{-1}\left(\frac{\omega}{k}\right), $$ so that (13) is exactly recovered. --- Combining all the solutions we obtain $$ \tag{18} u(t) = T_0 + \frac{T_1}{\sqrt{1 + (\omega/k)^2}}\cos{(\omega t-\tau)} + c e^{-kt}. $$