* # *DB FINAL PROJECT* ## Time schedule: ## datasets https://www.kaggle.com/nadintamer/datasets //3 years https://www.kaggle.com/leonardopena/top-spotify-songs-from-20102019-by-year //2010-2019 https://www.kaggle.com/leonardopena/top-50-spotify-songs-by-each-country //top 50 by country https://www.kaggle.com/pieca111/music-artists-popularity // singer to country https://www.kaggle.com/theworldbank/world-bank-gdp-ranking // country's GDP https://www.kaggle.com/ritesh2000/spotify-top-50-most-streamed-songs // top 1 song attributes https://www.kaggle.com/imdevskp/corona-virus-report // country to covid-19 ## 5/27 ![](https://i.imgur.com/pyluvm1.png) #### top2017>>>top17 ![](https://i.imgur.com/uhVlFKK.png) ![](https://i.imgur.com/aU3fnDN.png) #### top2018>>>top18 ![](https://i.imgur.com/iLbjU1U.png) ![](https://i.imgur.com/CcqLGa6.png) #### top2019>>>top19 ![](https://i.imgur.com/BUdzoVg.png) ![](https://i.imgur.com/nVpycrM.png) #### top2010~2019>>>top10_19 ![](https://i.imgur.com/f65UNtR.png) ![](https://i.imgur.com/TC2uMBX.png) #### top 50 and its country>>>country ![](https://i.imgur.com/KJ9hhJ8.png) ![](https://i.imgur.com/ioskaAR.png) #### gdp with ppp>>>gdp_ppp ![](https://i.imgur.com/E3mFhT7.png) ![](https://i.imgur.com/guQxYaI.png) millions_of_Ranking_Economy_international_dollars africa ZAF 南非 argentina ARG 阿根廷 australia AUS 澳洲 belgium BEL 比利時 bolivia BOL 玻利維亞 brazil BRA 巴西 canada CAN 加拿大 germany DEU 德國 colombia COL 哥倫比亞 chile CHL 智利 spain ESP 西班牙 usa USA 美國 france FRA 法國 india IND 印度 indonesia IDN 印尼 israel ISR 以色列 italy ITA 義大利 japan JPN 日本 malasya MYS 馬來西亞 #### top 1 song attributes>>>attributes ![](https://i.imgur.com/HKKeOGv.png) ![](https://i.imgur.com/atQcseC.png) average_streams(Millions) # 5/30 SQL 隨機產生top10 Weight: 前35%>>強 35~70%>>中 後70%>>弱 top50的特徵 音樂類別的推薦 該國家的top # 6/2 country和top10_19的 ### 除100 dnce(danceability) nrgy(energy) live(liveness) val(valence) acous(acousticness) spch(speechiness) ### *1000 dur(duration_ms) ### 不用變 bpm(tempo) dB(loudness) ex: SELECT title as name,artists,dnce/100 as danceability,nrgy/100 as energy,dB as loudness,spch/100 as speechiness,acous/100 as acousticness,live/100 as liveness,val/100 as valence,bpm as tempo,dur*1000 as duration_ms FROM top10_19 ### ------------------------------ 各項平均 SELECT AVG(danceability),AVG(energy),AVG(loudness),AVG(speechiness),AVG(acousticness),AVG(liveness),AVG(valence),AVG(tempo),AVG(duration_ms) FROM (SELECT name,artists,danceability,energy,loudness,speechiness,acousticness,liveness,valence,tempo,duration_ms FROM top17 UNION DISTINCT SELECT name,artists,danceability,energy,loudness,speechiness,acousticness,liveness,valence,tempo,duration_ms FROM top18 UNION DISTINCT SELECT name,artists,danceability,energy,loudness,speechiness,acousticness,liveness,valence,tempo,duration_ms FROM top19 UNION DISTINCT SELECT title as name,artists,dnce/100 as danceability,nrgy/100 as energy,dB as loudness,spch/100 as speechiness,acous/100 as acousticness,live/100 as liveness,val/100 as valence,bpm as tempo,dur*1000 as duration_ms FROM top10_19 UNION DISTINCT SELECT title as name,artists,dnce/100 as danceability,nrgy/100 as energy,dB as loudness,spch/100 as speechiness,acous/100 as acousticness,live/100 as liveness,val/100 as valence,bpm as tempo,dur*1000 as duration_ms FROM country) S top曲風 SELECT S.top_genre FROM (SELECT title,top_genre FROM country UNION SELECT title,top_genre FROM top10_19) S GROUP BY S.top_genre ORDER BY COUNT(*) DESC LIMIT 10 隨機10首 SELECT s.name, s.artists FROM (SELECT name, artists FROM top17 UNION DISTINCT SELECT name, artists FROM top18 UNION DISTINCT SELECT name, artists FROM top19 UNION DISTINCT SELECT title as name, artists FROM top10_19 UNION DISTINCT SELECT title as name, artists FROM country) s ORDER BY RAND() LIMIT 10 加到最愛 從最愛刪除