---
tags: 競プロ
---
# ACL をベースに modint を作ろう
- スニペットを失ったことだし modint を書き直したいな〜
- ACL の modint をベースにいい感じの modint を作ろう
### 追加機能
- `operator>>`, `operator<<` で入出力できるようにしよう
- `2_M` のように、suffix をつけて modint を作れるようにしよう
- `constexpr` に対応しよう
- ちょっとしたところがコンパイル時に計算されてうれしい
- ついでに mod を `uint32_t` にしてみよう
- `internal_type_traits` や `internal_math` の必要な部分のみを取り出して短くしよう
### できたもの
```cpp!
template<uint32_t m> class static_modint {
using mint = static_modint;
uint32_t _v = 0;
static constexpr bool prime = []() -> bool {
if (m == 1) return 0;
if (m == 2 || m == 7 || m == 61) return 1;
if (m % 2 == 0) return 0;
uint32_t d = m - 1;
while (d % 2 == 0) d /= 2;
for (uint32_t a : {2, 7, 61}) {
uint32_t t = d;
mint y = mint(a).pow(t);
while (t != m - 1 && y != 1 && y != m - 1) {
y *= y; t <<= 1;
}
if (y != m - 1 && t % 2 == 0) return 0;
}
return 1;
}();
static constexpr pair<int32_t, int32_t> inv_gcd(int32_t a, int32_t b) {
if (a == 0) return {b, 0};
int32_t s = b, t = a, m0 = 0, m1 = 1;
while (t) {
const int32_t u = s / t;
s -= t * u; m0 -= m1 * u;
swap(s, t); swap(m0, m1);
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
public:
static constexpr mint raw(uint32_t v) { mint a; a._v = v; return a; }
constexpr static_modint() {}
template <class T>
constexpr static_modint(T v) {
static_assert(is_integral_v<T>, "T is not integral type.");
if constexpr (is_signed_v<T>) {
int64_t x = int64_t(v % int64_t(m));
if (x < 0) x += m; _v = uint32_t(x);
}
else _v = uint32_t(v % m);
}
static constexpr uint32_t mod() { return m; }
constexpr uint32_t val() const { return _v; }
constexpr mint& operator++() { return *this += 1; }
constexpr mint& operator--() { return *this -= 1; }
constexpr mint operator++(int) { mint res = *this; ++*this; return res; }
constexpr mint operator--(int) { mint res = *this; --*this; return res; }
constexpr mint& operator+=(mint rhs) {
if (_v >= m - rhs._v) _v -= m;
_v += rhs._v; return *this;
}
constexpr mint& operator-=(mint rhs) {
if (_v < rhs._v) _v += m;
_v -= rhs._v; return *this;
}
constexpr mint& operator*=(mint rhs) { return *this = *this * rhs; }
constexpr mint& operator/=(mint rhs) { return *this *= rhs.inv(); }
constexpr mint operator+() const { return *this; }
constexpr mint operator-() const { return mint{} - *this; }
constexpr mint pow(long long n) const {
assert(0 <= n);
if(n == 0) return 1;
mint x = *this, r = 1;
while (1) {
if (n & 1) r *= x; n >>= 1;
if (n == 0) return r;
x *= x;
}
}
constexpr mint inv() const {
if constexpr (prime) {
assert(_v);
return pow(m - 2);
} else {
auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend constexpr mint operator+(mint lhs, mint rhs) { return lhs += rhs; }
friend constexpr mint operator-(mint lhs, mint rhs) { return lhs -= rhs; }
friend constexpr mint operator*(mint lhs, mint rhs) { return uint64_t(lhs._v) * rhs._v; }
friend constexpr mint operator/(mint lhs, mint rhs) { return lhs /= rhs; }
friend constexpr bool operator==(mint lhs, mint rhs) { return lhs._v == rhs._v; }
friend constexpr bool operator!=(mint lhs, mint rhs) { return lhs._v != rhs._v; }
};
using mint = static_modint<998244353>;
istream& operator>>(istream& in, mint& x) { long long a; in >> a; x = a; return in; }
ostream& operator<<(ostream& out, mint x) { return out << x.val(); }
constexpr mint operator""_M(unsigned long long x) { return x; }
```
- Miller–Rabin 法であるところの `is_prime_constexpr` は自分自身の `static_modint` を使って書くことができるので、ずいぶん短くなります
- Miller–Rabin 法を使わないと constexpr の計算制限に引っかかったりして困るんですね〜
- `inv_gcd` は (`mod < INT_MAX` なら) 32 bit 整数で十分なので、 32 bit 整数にして高速化します。