<style> .reveal .slides { text-align: left; font-size:30px; } </style> # Math2 2022 / 9 / 27 * 微積分 * 運動學 * 作業 --- ## 微積分應用 * 微分:切線斜率 * 積分:面積 ---- ### 速度是位移對時間的微分 ![](https://i.imgur.com/JMn3QKq.png =500x) $\bar{v} = \frac{x_2-x_1}{t_2-t_1}=\frac{\Delta x}{\Delta t} (xt圖的斜率)$ $when \underset{\Delta t\rightarrow0}\lim v = \frac{dx}{dt}$ \begin{cases} x'(t)=v(t)\\ \int{v(t)dt} = x(t)  (vt圖的面積) \end{cases} 換句話說:位移是速度對時間的積分 ---- ![](https://i.imgur.com/WKct9Sw.png =400x) $\bar{v} = \frac{x_2-x_1}{t_2-t_1}=\frac{\Delta x}{\Delta t}$ 瞬時速度:$v=\underset{\Delta t\rightarrow0}\lim{\frac{\Delta x}{\Delta t}}$ ---- ### 加速度是速度對時間的微分 ![](https://i.imgur.com/6lJIRqb.png =200x) $\bar{a} = \frac{v_2-v_1}{t_2-t_1}=\frac{\Delta v}{\Delta t} (vt圖的斜率)$ $when \underset{\Delta t\rightarrow0}\lim a = \frac{dv}{dt}$ \begin{cases} v'(t)=a(t)\\ \int{a(t)dt} = v(t)   \end{cases} 換句話說:速度是加速度對時間的積分 ---- ### 總結 \begin{aligned} &\begin{cases} x'(t)=v(t)\\ \int{v(t)dt} = x(t) \end{cases}\\\\ &\begin{cases} v'(t)=a(t)\\ \int{a(t)dt} = v(t)   \end{cases} \end{aligned} | | | -------- | | ![](https://i.imgur.com/rAeMREV.png =550x)| --- ## 運動學 \begin{cases} v=v_0+at\\ s=v_0t+\frac{1}{2}at^2\\ v^2=v_0^2+2as  \end{cases} --- ## 作業 * 運動學 * 微積分 * 三角函數 ---- ![](https://i.imgur.com/2ntCP1R.png) 已知:$H, T_{max}, T_{total}$ 思路:從 "已知" 推出 "未知" 可以分為兩個部分: 1. 石頭向上移動到最高點 2. 石頭從向上到向下的整個運動過程 ---- 要怎麼將1與2取得關聯呢? 之間的關係是什麼?$3T_{max}=T_{total}$ ![](https://i.imgur.com/F8c5xC1.png) 1. 石頭向上移動到最高點,得到時間與速度的關係: $V=V_0+at$ 得到$V=V_0+gT_{max}$ $T_{max}=\frac{V_0}{g}$ 有了$T_{max}就能從3T_{max}=T_{total}$得到整體時間的關係 ---- 2. 石頭從向上到向下的整個運動過程: ![](https://i.imgur.com/ypXCYmI.png) 有什麼資訊? ---- 從1.得到時間的關係: (1) $T_{max}=\frac{V_0}{g}$   (2) $3T_{max}=T_{total} $ 2. 石頭從向上到向下的整個運動過程:(向上為正,向下為負。) $S=V_0t+\frac{1}{2}at^2$ 得到$-H=V_0T_{total}-\frac{1}{2}gT_{total}^2$ \begin{aligned} (2)\because 3T_{max}&=T_{total}\\ \therefore -H&=V_03T_{max}-\frac{1}{2}g(3T_{max})^2\\ (1)\because T_{max}&=\frac{V_0}{g}\\ \therefore -H&=\frac{3V_0^2}{g}-\frac{9V_0^2}{2g}=\frac{-3V_0^2}{2g}\\ V_0^2&=\frac{2Hg}{3} \Rightarrow V_0=\sqrt{\frac{2Hg}{3}}\\ \end{aligned} ---- #### 微積分應用 ---- ![](https://i.imgur.com/rx5HoA9.png) Part A Find its ==position== at the first instant when the car has ==zero velocity==. $x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5$ $if:v(t)=0,t=0$ (the first instant) x(0)=2.17m ---- ![](https://i.imgur.com/rx5HoA9.png) Part B Find its ==acceleration== at the first instant when the car has ==zero velocity==. $x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5$ $v'(t)=a(t)=(9.60m/s^2)-(3.000m/s^6)t^4$ $if:v(t)=0,t=0$ (the first instant) $a(0)=9.60m/s^2$ ---- ![](https://i.imgur.com/rx5HoA9.png) Part C Find its ==position== at the ==second instant== when the car has ==zero velocity==. $x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5$ $v(t)=(9.60m/s^2)t-(0.600tm/s^6)t^5$ $if:v(t)=0,(9.60m/s^2)t=(0.600tm/s^6)t^5$ $t^4=\frac{9.60m/s^2}{0.600tm/s^6}$ t=2 (the second instant) x(2)=14.97m ---- ![](https://i.imgur.com/rx5HoA9.png) Part D Find its ==acceleration== at the ==second instant== when the car has ==zero velocity==. $v'(t)=a(t)=(9.60m/s^2)-(3.000m/s^6)t^4$ t=2 (the second instant) $a(2)=38.4m/s^2$ ---- #### 三角函數 ---- ![](https://i.imgur.com/3Inu5gn.png) $\vec{a}\cdot\vec{b}=\vert a\vert\vert b\vert\cos\theta$ $\vert\vec{a}\times\vec{b}\vert=\vert a\vert\vert b\vert\sin\theta$ \begin{aligned} \vec{a}\cdot\vec{b}&=6\vert\vec{a}\times\vec{b}\vert\\ \vert a\vert\vert b\vert\cos\theta&=6\vert a\vert\vert b\vert\sin\theta\\ cos\theta&=6sin\theta\\ \frac{1}{6}&=\frac{sin\theta}{cos\theta}=tan\theta\\ arctan(\frac{1}{6})&\approx 9.4623° \end{aligned} ---- Part C drives ==3.40 km north==, then ==2.35 km west==, and then ==1.30 km south==. ![](https://i.imgur.com/Bbiw5Tn.png) $90 -arcsin(\frac{2.10}{\sqrt{2.35^2+2.1^2}})\approx 48.215°$ ---- #### 後記 \begin{cases} v=v_0+at\\ s=v_0t+\frac{1}{2}at^2\\ v^2=v_0^2+2as  \end{cases} | 微積分應用 | | -------- | | ![](https://i.imgur.com/rAeMREV.png =550x)| --- 上課表現優良同學:何燿安 陳尚洋 翁子翔 周哲瑀 蔡沂呈 參考資料: https://www.zetria.org/view.php?subj=physics&chap=i6h2o001q4 https://www.zetria.org/view.php?subj=physics&chap=8148jgsxfg https://www.xuehua.us/a/5ec089031b1de67add7ab7b4?lang=zh-tw https://zh.wikipedia.org/zh-tw/%E5%BE%AE%E5%88%86
{"metaMigratedAt":"2023-06-17T10:10:26.478Z","metaMigratedFrom":"YAML","title":"Math2","breaks":true,"slideOptions":"{\"transition\":\"fade;\"}","contributors":"[{\"id\":\"d1ce5988-a8d9-47ae-a71f-dd518d97057f\",\"add\":5306,\"del\":925}]"}
    433 views