<style>
.reveal .slides {
text-align: left;
font-size:30px;
}
</style>
# Math2
2022 / 9 / 27
* 微積分
* 運動學
* 作業
---
## 微積分應用
* 微分:切線斜率
* 積分:面積
----
### 速度是位移對時間的微分

$\bar{v} = \frac{x_2-x_1}{t_2-t_1}=\frac{\Delta x}{\Delta t} (xt圖的斜率)$
$when \underset{\Delta t\rightarrow0}\lim v = \frac{dx}{dt}$
\begin{cases}
x'(t)=v(t)\\
\int{v(t)dt} = x(t) (vt圖的面積)
\end{cases}
換句話說:位移是速度對時間的積分
----

$\bar{v} = \frac{x_2-x_1}{t_2-t_1}=\frac{\Delta x}{\Delta t}$
瞬時速度:$v=\underset{\Delta t\rightarrow0}\lim{\frac{\Delta x}{\Delta t}}$
----
### 加速度是速度對時間的微分

$\bar{a} = \frac{v_2-v_1}{t_2-t_1}=\frac{\Delta v}{\Delta t} (vt圖的斜率)$
$when \underset{\Delta t\rightarrow0}\lim a = \frac{dv}{dt}$
\begin{cases}
v'(t)=a(t)\\
\int{a(t)dt} = v(t)
\end{cases}
換句話說:速度是加速度對時間的積分
----
### 總結
\begin{aligned}
&\begin{cases}
x'(t)=v(t)\\
\int{v(t)dt} = x(t)
\end{cases}\\\\
&\begin{cases}
v'(t)=a(t)\\
\int{a(t)dt} = v(t)
\end{cases}
\end{aligned}
| |
| -------- |
| |
---
## 運動學
\begin{cases}
v=v_0+at\\
s=v_0t+\frac{1}{2}at^2\\
v^2=v_0^2+2as
\end{cases}
---
## 作業
* 運動學
* 微積分
* 三角函數
----

已知:$H, T_{max}, T_{total}$
思路:從 "已知" 推出 "未知"
可以分為兩個部分:
1. 石頭向上移動到最高點
2. 石頭從向上到向下的整個運動過程
----
要怎麼將1與2取得關聯呢?
之間的關係是什麼?$3T_{max}=T_{total}$

1. 石頭向上移動到最高點,得到時間與速度的關係:
$V=V_0+at$
得到$V=V_0+gT_{max}$
$T_{max}=\frac{V_0}{g}$
有了$T_{max}就能從3T_{max}=T_{total}$得到整體時間的關係
----
2. 石頭從向上到向下的整個運動過程:

有什麼資訊?
----
從1.得到時間的關係:
(1) $T_{max}=\frac{V_0}{g}$
(2) $3T_{max}=T_{total} $
2. 石頭從向上到向下的整個運動過程:(向上為正,向下為負。)
$S=V_0t+\frac{1}{2}at^2$ 得到$-H=V_0T_{total}-\frac{1}{2}gT_{total}^2$
\begin{aligned}
(2)\because 3T_{max}&=T_{total}\\
\therefore -H&=V_03T_{max}-\frac{1}{2}g(3T_{max})^2\\
(1)\because T_{max}&=\frac{V_0}{g}\\
\therefore -H&=\frac{3V_0^2}{g}-\frac{9V_0^2}{2g}=\frac{-3V_0^2}{2g}\\
V_0^2&=\frac{2Hg}{3} \Rightarrow V_0=\sqrt{\frac{2Hg}{3}}\\
\end{aligned}
----
#### 微積分應用
----

Part A
Find its ==position== at the first instant when the car has ==zero velocity==.
$x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5$
$if:v(t)=0,t=0$ (the first instant)
x(0)=2.17m
----

Part B
Find its ==acceleration== at the first instant when the car has ==zero velocity==.
$x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5$
$v'(t)=a(t)=(9.60m/s^2)-(3.000m/s^6)t^4$
$if:v(t)=0,t=0$ (the first instant)
$a(0)=9.60m/s^2$
----

Part C
Find its ==position== at the ==second instant== when the car has ==zero velocity==.
$x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5$
$v(t)=(9.60m/s^2)t-(0.600tm/s^6)t^5$
$if:v(t)=0,(9.60m/s^2)t=(0.600tm/s^6)t^5$
$t^4=\frac{9.60m/s^2}{0.600tm/s^6}$
t=2 (the second instant)
x(2)=14.97m
----

Part D
Find its ==acceleration== at the ==second instant== when the car has ==zero velocity==.
$v'(t)=a(t)=(9.60m/s^2)-(3.000m/s^6)t^4$
t=2 (the second instant)
$a(2)=38.4m/s^2$
----
#### 三角函數
----

$\vec{a}\cdot\vec{b}=\vert a\vert\vert b\vert\cos\theta$
$\vert\vec{a}\times\vec{b}\vert=\vert a\vert\vert b\vert\sin\theta$
\begin{aligned}
\vec{a}\cdot\vec{b}&=6\vert\vec{a}\times\vec{b}\vert\\
\vert a\vert\vert b\vert\cos\theta&=6\vert a\vert\vert b\vert\sin\theta\\
cos\theta&=6sin\theta\\
\frac{1}{6}&=\frac{sin\theta}{cos\theta}=tan\theta\\
arctan(\frac{1}{6})&\approx 9.4623°
\end{aligned}
----
Part C
drives ==3.40 km north==, then ==2.35 km west==, and then ==1.30 km south==.

$90 -arcsin(\frac{2.10}{\sqrt{2.35^2+2.1^2}})\approx 48.215°$
----
#### 後記
\begin{cases}
v=v_0+at\\
s=v_0t+\frac{1}{2}at^2\\
v^2=v_0^2+2as
\end{cases}
| 微積分應用 |
| -------- |
| |
---
上課表現優良同學:何燿安 陳尚洋 翁子翔 周哲瑀 蔡沂呈
參考資料:
https://www.zetria.org/view.php?subj=physics&chap=i6h2o001q4
https://www.zetria.org/view.php?subj=physics&chap=8148jgsxfg
https://www.xuehua.us/a/5ec089031b1de67add7ab7b4?lang=zh-tw
https://zh.wikipedia.org/zh-tw/%E5%BE%AE%E5%88%86
{"metaMigratedAt":"2023-06-17T10:10:26.478Z","metaMigratedFrom":"YAML","title":"Math2","breaks":true,"slideOptions":"{\"transition\":\"fade;\"}","contributors":"[{\"id\":\"d1ce5988-a8d9-47ae-a71f-dd518d97057f\",\"add\":5306,\"del\":925}]"}