2022 / 9 / 27
\(\bar{v} = \frac{x_2-x_1}{t_2-t_1}=\frac{\Delta x}{\Delta t} (xt圖的斜率)\)
\(when \underset{\Delta t\rightarrow0}\lim v = \frac{dx}{dt}\)
\begin{cases}
x'(t)=v(t)\\
\int{v(t)dt} = x(t) (vt圖的面積)
\end{cases}
換句話說:位移是速度對時間的積分
\(\bar{v} = \frac{x_2-x_1}{t_2-t_1}=\frac{\Delta x}{\Delta t}\)
瞬時速度:\(v=\underset{\Delta t\rightarrow0}\lim{\frac{\Delta x}{\Delta t}}\)
\(\bar{a} = \frac{v_2-v_1}{t_2-t_1}=\frac{\Delta v}{\Delta t} (vt圖的斜率)\)
\(when \underset{\Delta t\rightarrow0}\lim a = \frac{dv}{dt}\)
\begin{cases}
v'(t)=a(t)\\
\int{a(t)dt} = v(t)
\end{cases}
換句話說:速度是加速度對時間的積分
\begin{aligned} &\begin{cases} x'(t)=v(t)\\ \int{v(t)dt} = x(t) \end{cases}\\\\ &\begin{cases} v'(t)=a(t)\\ \int{a(t)dt} = v(t) \end{cases} \end{aligned}
![]() |
\begin{cases} v=v_0+at\\ s=v_0t+\frac{1}{2}at^2\\ v^2=v_0^2+2as \end{cases}
已知:\(H, T_{max}, T_{total}\)
思路:從 "已知" 推出 "未知"
可以分為兩個部分:
要怎麼將1與2取得關聯呢?
之間的關係是什麼?\(3T_{max}=T_{total}\)
有什麼資訊?
從1.得到時間的關係:
(1) \(T_{max}=\frac{V_0}{g}\)
(2) \(3T_{max}=T_{total} \)
\begin{aligned} (2)\because 3T_{max}&=T_{total}\\ \therefore -H&=V_03T_{max}-\frac{1}{2}g(3T_{max})^2\\ (1)\because T_{max}&=\frac{V_0}{g}\\ \therefore -H&=\frac{3V_0^2}{g}-\frac{9V_0^2}{2g}=\frac{-3V_0^2}{2g}\\ V_0^2&=\frac{2Hg}{3} \Rightarrow V_0=\sqrt{\frac{2Hg}{3}}\\ \end{aligned}
Part A
Find its position at the first instant when the car has zero velocity.
\(x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5\)
\(if:v(t)=0,t=0\) (the first instant)
x(0)=2.17m
Part B
Find its acceleration at the first instant when the car has zero velocity.
\(x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5\)
\(v'(t)=a(t)=(9.60m/s^2)-(3.000m/s^6)t^4\)
\(if:v(t)=0,t=0\) (the first instant)
\(a(0)=9.60m/s^2\)
Part C
Find its position at the second instant when the car has zero velocity.
\(x'(t)=v(t)=(9.60m/s^2)t-(0.600m/s^6)t^5\)
\(v(t)=(9.60m/s^2)t-(0.600tm/s^6)t^5\)
\(if:v(t)=0,(9.60m/s^2)t=(0.600tm/s^6)t^5\)
\(t^4=\frac{9.60m/s^2}{0.600tm/s^6}\)
t=2 (the second instant)
x(2)=14.97m
Part D
Find its acceleration at the second instant when the car has zero velocity.
\(v'(t)=a(t)=(9.60m/s^2)-(3.000m/s^6)t^4\)
t=2 (the second instant)
\(a(2)=38.4m/s^2\)
\(\vec{a}\cdot\vec{b}=\vert a\vert\vert b\vert\cos\theta\)
\(\vert\vec{a}\times\vec{b}\vert=\vert a\vert\vert b\vert\sin\theta\)
\begin{aligned} \vec{a}\cdot\vec{b}&=6\vert\vec{a}\times\vec{b}\vert\\ \vert a\vert\vert b\vert\cos\theta&=6\vert a\vert\vert b\vert\sin\theta\\ cos\theta&=6sin\theta\\ \frac{1}{6}&=\frac{sin\theta}{cos\theta}=tan\theta\\ arctan(\frac{1}{6})&\approx 9.4623° \end{aligned}
Part C
drives 3.40 km north, then 2.35 km west, and then 1.30 km south.
\(90 -arcsin(\frac{2.10}{\sqrt{2.35^2+2.1^2}})\approx 48.215°\)
\begin{cases} v=v_0+at\\ s=v_0t+\frac{1}{2}at^2\\ v^2=v_0^2+2as \end{cases}
微積分應用 |
---|
![]() |