<style> .reveal .slides { text-align: left; font-size:30px; } </style> # Magnetic field2 2022 / 12 / 6 * 磁場 * 必歐-沙伐定律 * 兩平行導線受力 * 安培定律 --- ## 磁場 * 安培右手 ---- ### 安培右手 ![](https://i.imgur.com/T9QTWUW.png =400x)  ![](https://i.imgur.com/2OmLEOB.png =400x) #### 電生磁 (環形磁場) ---- ### 安培右手 ![](https://i.imgur.com/vIYNP1i.png =250x)  ![](https://i.imgur.com/kAgpkAG.png =400x) #### 電生磁 (單一方向磁場) ---- #### ==例題1== ![](https://i.imgur.com/eT1GIhX.png) ---- #### ==例題2== ![](https://i.imgur.com/OukDfRa.png) --- ## 必歐-沙伐定律 用來計算==磁場大小==與==方向== * 載流長直導線 * 載流線圈 ---- ### 必歐-沙伐定律 ![](https://i.imgur.com/5JgStOp.png) 取一極小線段對P點造成的磁場。 圖上的$d\vec{l}=d\vec{S}$ \begin{aligned} d\vec{B}&=\frac{\mu_0}{4\pi}\frac{I d\vec{S}\times\hat{r}}{r^2}\\ \\\\那如果是&問P點所受的「總磁場」呢? \end{aligned} ---- #### ==載流長直導線磁場== ![](https://i.imgur.com/tgcbHMc.png) [參考資料:25~27頁](https://slidesplayer.com/slide/11386663/) ---- #### ==載流線圈磁場== ![](https://i.imgur.com/qtIOXzg.png =500x) <!--\begin{aligned} \vec{B}=\frac{\mu_0IR^2}{2(R^2+z^2)^{\frac{3}{2}}} \end{aligned}--> $如果是圓心O,代入z=0:$ \begin{aligned} \vec{B}&=\frac{\mu_0IR^2}{2(R^2)^{\frac{3}{2}}}\\ &=\frac{\mu_0I}{2R}\ \ (圓心處磁場) \end{aligned} [參考資料:28~30頁](https://slidesplayer.com/slide/11386663/) ---- ### ==必歐-沙伐 總結== | 載流長直導線磁場 | 載流線圈磁場 | | -------- | -------- | |$\color{red}{\vec{B}=\frac{\mu_0I}{2\pi a}(無限長)}$ |$\color{red}{\vec{B}=\frac{\mu_0I}{2R}(圓心處磁場)}$| |$\vec{B}=\frac{\mu_0 I}{4\pi a}(\cos{\theta_1}-cos\theta_2)(有限長)$|$\vec{B}=\frac{\mu_0IR^2}{2(R^2+z^2)^{\frac{3}{2}}}(圓心軸上任一點)$| ---- #### ==例題== 試問線圈a與線圈b中心點的磁場強度差異? ![reference link](https://i.imgur.com/IBAhcrR.png =200x) 半徑都是$r$ 分析:有線圈的磁場、有導線的磁場。 \begin{aligned} \vec{B}&=\vec{B}_{長直導線}+\vec{B}_{線圈}\\ \vec{B_a}&=\frac{\mu_0I}{2\pi a}+\frac{\mu_0I}{2R}\\ \vec{B_b}&=\frac{\mu_0I}{2\pi a}-\frac{\mu_0I}{2R} \end{aligned} ---- \begin{aligned} 代入r\\ \vec{B_a}&=\frac{\mu_0I}{2\pi r}+\frac{\mu_0I}{2r}\\ \vec{B_b}&=\frac{\mu_0I}{2\pi r}-\frac{\mu_0I}{2r}\\\\ \Longrightarrow|&\vec{B_a}|-|\vec{B_b}|=\frac{\mu_0I}{\pi r} \end{aligned} ---- ## 兩平行導線受力 ![](https://i.imgur.com/oeTnxfQ.png =250x) ![](https://i.imgur.com/UOVL7HG.png =190x) * 原理:互相給對方磁場,讓導線產生力。 * 吸引力(電流方向相同) * 排斥力(電流方向相反) \begin{aligned} \vec{F}=\vec{I}(L\times\vec{B})\\ \vec{B}\ \ 代入長&直導線磁場\ \frac{\mu_0I}{2\pi a}\\ \Longrightarrow \frac{F}{L}=&\frac{\mu_0I_1I_2}{2\pi a}(每L長度導線的受力) \end{aligned} --- ## 安培定律 $\oint\vec{B}\cdot d\vec{S}=\mu_0I_{net}$ ![](https://i.imgur.com/dY9m4ST.png =300x) ![](https://i.imgur.com/jBVPQhE.png) 封閉曲面所經過的電流越大,其磁場也越大。 \= 一個面上經過的電荷越多,當然磁場也越大。 ---- #### ==例題1== ![](https://i.imgur.com/VqPvACn.png) $\oint\vec{B}\cdot d\vec{S}=0$ 安培定律:封閉曲面中沒有電流,沒有磁場。 ---- #### ==例題2== ![](https://i.imgur.com/PnbFQAM.png) ![](https://i.imgur.com/ag8WtV0.png) $電流 = 電流密度\times 面積$ (每秒經過面的電荷量) ---- ![](https://i.imgur.com/ag8WtV0.png =300x) \begin{aligned} \oint\vec{B}\cdot d\vec{S}&=\mu_0\color{red}{I_{net}}\\ 電流\color{red}{I} &= 電流密度J\times 面積A\\ \color{red}{3.6\ (A)}&= 15\times\frac{1}{2}[(4\cdot 0.2m)\times(3\cdot 0.2m)]\\ \oint\vec{B}\cdot d\vec{S}&=\mu_0\times 3.6 = 4\pi\cdot 10^{-7}\times 3.6 \\&= 4.52\cdot 10^{-6}\ (T\cdot m)\\ \end{aligned} ---- #### 螺線管內部的磁場 ![](https://i.imgur.com/GDa29tO.png =300x) ![](https://i.imgur.com/hi5AWEM.png =300x) $線圈密度n=\frac{圈數}{長度}=\frac{N}{l}$ \begin{aligned} \oint\vec{B}&\cdot d\vec{S}=\mu_0I_{net}\\ B\cdot l&=\mu_0I\cdot N\\ B &= \mu_0nI\\\\ &n是線圈密度 \end{aligned} ---- #### ==例題== ![](https://i.imgur.com/lBW8E8B.jpg) \begin{aligned} B &= \mu_0nI\\ B &= 4\pi\cdot10^{-7}\times 500 \times 4.0\\ &= 2.513\cdot 10^{-3}\ (T) \end{aligned} ---- #### 環形線圈 ![](https://i.imgur.com/nFFThkb.png) \begin{aligned} \oint\vec{B}&\cdot d\vec{S}=\mu_0I_{net}\\ B\cdot 2\pi r&=\mu_0NI\\ B &= \frac{\mu_0NI}{2\pi r}\\\\ &N是圈數 \end{aligned} --- ## ==總結== ![](https://i.imgur.com/5JgStOp.png =90x) 必歐-沙伐定律:$d\vec{B}=\frac{\mu_0}{4\pi}\frac{I d\vec{S}\times\hat{r}}{r^2}$ | 載流長直導線磁場 | 載流線圈磁場 | | -------- | -------- | |$\color{red}{\vec{B}=\frac{\mu_0I}{2\pi a}(無限長)}$ |$\color{red}{\vec{B}=\frac{\mu_0I}{2R}(圓心處磁場)}$| |$\vec{B}=\frac{\mu_0 I}{4\pi a}(\cos{\theta_1}-cos\theta_2)(有限長)$|$\vec{B}=\frac{\mu_0IR^2}{2(R^2+z^2)^{\frac{3}{2}}}(圓心軸上任一點)$| |![](https://i.imgur.com/T9QTWUW.png =200x) |![](https://i.imgur.com/vIYNP1i.png =150x)| ---- * ![](https://i.imgur.com/oeTnxfQ.png =90x) 兩平行導線受力:$\frac{F}{L}=\frac{\mu_0I_1I_2}{2\pi a}$ * ![](https://i.imgur.com/jBVPQhE.png =70x) 安培定律(封閉曲面與電流):$\oint\vec{B}\cdot d\vec{S}=\mu_0I_{net}\ \ (T\cdot m)$ ![](https://i.imgur.com/qYAEFLF.png =70x) $\color{red}{螺線管}$內部磁場:$B = \mu_0\color{red}{n}I\ \ (n是線圈密度)$ ![](https://i.imgur.com/nFFThkb.png =70x) $\color{red}{環形線圈}$內部磁場:$B = \frac{\mu_0\color{red}{N}I}{2\pi r}\ \ (N是線圈數)$ 不要搞錯n跟N哦!!! $線圈密度n=\frac{圈數}{長度}=\frac{N}{l}$ ---- ### 參考資料 https://www.sec.ntnu.edu.tw/uploads/asset/data/62563fd0381784d09345ba1d/3-P22-32-106040-%E7%A7%91%E5%AD%B8%E7%9F%A5%E8%AD%98-%E9%BB%83%E5%85%89%E7%85%A7-%E5%BF%85%E6%AD%90-%E6%B2%99%E4%BC%90%E5%AE%9A%E5%BE%8B%E7%9A%84%E6%8E%A8%E5%B0%8E.pdf https://slidesplayer.com/slide/11386663/ https://www.ehanlin.com.tw/app/keyword/%E9%AB%98%E4%B8%AD/%E7%89%A9%E7%90%86/%E8%BC%89%E6%B5%81%E8%9E%BA%E7%B7%9A%E7%AE%A1%E7%94%A2%E7%94%9F%E7%9A%84%E7%A3%81%E5%A0%B4.html
{"metaMigratedAt":"2023-06-17T16:02:17.013Z","metaMigratedFrom":"YAML","title":"Magnetic field2","breaks":true,"slideOptions":"{\"transition\":\"fade;\"}","contributors":"[{\"id\":\"d1ce5988-a8d9-47ae-a71f-dd518d97057f\",\"add\":7177,\"del\":1824}]"}
    1117 views