--- title: 'Tâm - Week 7' tags: CoderSchool, Mariana --- Week 7 === ## Table of Contents [TOC] ## Monday ## Tuesday ## Wednesday ## Thursday ### Project presentation Ly-Khoa: - build model from scratch Dinh-Long: - use data augmentation: rotate, zoom, horizontal flip - VGG16 pretrained on imagenet Nhan-Sean: - SGD, RMSProp, Adam - Adam with MobileNetV2 works best 94% Tuc-Felix: - ImageDataGenerator() - EarlyStopping - We will try to apply SQL and Base64 ### Mechanics of Tensorflow - Tensorflow converts protocols into graphs (which can be run on GPU and other devices or distributed systems) - Tensorflow 2. is more pythonic - AUTOTUNE helps find the best parameters for buffer_size - `@tf.function` converts python code into tensorflow graph, can run on GPU - DAG Directed Acyclic Graph ## Friday ### Dog-Cat classifier walkthru #### preprocess and prepare train-test #### evaluate and learn about the model - List images with highest probability correct predictions/wrong predictions - Using **TensorBoard** can see metrics of model. can see computational graphs of model. #### build custom model - We can use tf.keras layers to build a model - activation functions - GlorotNormal and GlorotUniform are best parameter initializer - Optimizers update parameters. Adam optimizer uses moving average of dW to update parameters - losses - metrics - applications: pretrained models #### google image downloader - require chromedriver and selenium to download more than 100 images - I correctly predict for rose (88%) and sunflower (92%) https://colab.research.google.com/drive/1RkoWiQzPSkp_I_k_Gti6pz6fTJFJw_37 :::info **Find this document incomplete?** Leave a comment! ::: ###### tags: `CoderSchool` `Mariana` `MachineLearning`