# Equação de montante com aportes $y[n+1]=(1+i)y[n]+x[n+1]$ $y[0]=C$ $x[n] = \tau\sum_{k=0}^\infty\delta[n-\rho(k+1)]$ Aplicando transformada Z: $zY[z]-zy[0]=(1+i)Y[z]+zX[z]-zx[0]$ $zY[z]-zC=(1+i)Y[z]+zX[z]$ $zY[z]-(1+i)Y[z]=zC+zX[z]$ $Y[z]-\frac{(1+i)}{z}Y[z]=C+X[z]$ $Y[z](1-\frac{(1+i)}{z})=C+X[z]$ $Y[z](\frac{z-(1+i)}{z})=C+X[z]$ $Y[z]=C\frac{z}{z-(1+i)}+X[z]\frac{z}{z-(1+i)}$ $Y[z]=Y_{i0}[z]+Y_{s0}[z]$ $Y_{i0}[z]=C\frac{z}{z-(1+i)}$ $y_{i0}[n]=C(1+i)^{n}$ Exponencial e tals $Y_{s0}[n]=X[z]\frac{z}{z-(1+i)}$ Bora ver $X[z]$ $x[n] = \tau\sum_{k=0}^\infty\delta[n-\rho(k+1)]$ $X[z]=\sum_{n=0}^\infty(\tau\sum_{k=0}^\infty\delta[n-\rho(k+1)])z^{-n}$ $X[z]=\tau\sum_{k=0}^\infty(\sum_{n=0}^\infty\delta[n-\rho(k+1)])z^{-n}$ $X[z]=\tau\sum_{k=0}^\infty z^{-\rho(k+1)}$ $y_{s0}[n]=X[z]\frac{z}{z-(1+i)}$ $y_{s0}[n]=\tau\sum_{k=0}^\infty \frac{z}{z-(1+i)}z^{-\rho(k+1)}$ $y_{s0}[n]=\tau\sum_{k=0}^\infty(1+i)^{n-\rho(k+1)}\space u[n-\rho(k+1)]$ ###### tags: `Blog`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up