## New features - [pyro.factor](http://docs.pyro.ai/en/stable/primitives.html#pyro.factor) to add arbitrary log probability factor to a probabilistic model. - Conditional MADE Autoregressive Network available in [pyro.nn](http://docs.pyro.ai/en/stable/nn.html#pyro.nn.auto_reg_nn.ConditionalAutoRegressiveNN). - Tutorial on [adaptive experiment design](http://pyro.ai/examples/working_memory.html) for studying working memory. - KL divergence for `Delta` and `Independent` distributions. - A fast `n log(n)` implementation of the [Continuous Ranked Probability Score (CRPS)](https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf) for sample sets: [pyro.ops.stats.crps_empirical](http://docs.pyro.ai/en/dev/ops.html#pyro.ops.stats.crps_empirical) ## Code changes and bug fixes - Moved `pyro.generic` to a separate [pyro-api](https://github.com/pyro-ppl/pyro-api) package. - Minor changes to ensure compatibility with [pyro-api](https://github.com/pyro-ppl/pyro-api), a generic modeling and inference API for dispatch to different Pyro backends. - Improve numerical stability of MixtureOfDiagonals distribution using `logsumexp` operation. - Improved U-Turn check condition in NUTS for better sampling efficiency. - Reorganized `constraints` and `transforms` module to match `torch.distributions`. - Fixed AutoGuide intitialization stragtegies, resolving a bug in `init_to_median`.