# 機率HW9 ## 110590064 資工二 劉韶軒 ## Problem 1 ### 題目 >Let the joint probabilty mass fuction of discreate random variable X and Ybe given by >p(x,y) >=c(x+y) if x=1,2,3,y=1,2 >=0 otherwise >(a) the value of the constant c >(b) the marginal probabilty mass function of X,Y >(c) P(x>=2|Y=1) >(d)E(X) and E(Y) ### 解答 #### (a) $∑∑p(x,y) = 1$ $p(1,1) + p(1,2) + p(2,1) + p(2,2) + p(3,1) + p(3,2) = 1$ $c(1+1) + c(1+2) + c(2+1) + c(2+2) + c(3+1) + c(3+2) = 1$ $=2c+3c+3c+4c+4c+5c = 1$ $=21c=1;c=\frac{1}{21}$ #### (b) $pX(x) = Σ p(x,y)$ $pX(1) = p(1,1) + p(1,2) = c(1+1) + c(1+2) = 2c + 3c = 5c$ $pX(2) = p(2,1) + p(2,2) = c(2+1) + c(2+2) = 3c + 4c = 7c$ $pX(3) = p(3,1) + p(3,2) = c(3+1) + c(3+2) = 4c + 5c = 9c$ $pX(x) = 5c,當 x=1$ $pX(x) = 7c,當 x=2$ $pX(x) = 9c,當 x=3$ $pY(y) = Σ p(x,y)$ $pY(1) = p(1,1) + p(2,1) + p(3,1) = c(1+1) + c(2+1) + c(3+1) = 2c + 3c + 4c = 9c$ $pY(2) = p(1,2) + p(2,2) + p(3,2) = c(1+2) + c(2+2) + c(3+2) = 3c + 4c + 5c = 12c$ $pY(y) = 9c,當 y=1$ $pY(y) = 12c,當 y=2$ #### (c) $p(x>=2|Y=1) = \frac{p(x>=2,Y=1)}{ p(Y=1)}$ $p(x>=2,Y=1) = p(2,1) + p(3,1) = c(2+1) + c(3+1) = 3c + 4c = 7c$ $p(Y=1) = 9c$ $p(x>=2|Y=1) = \frac{7c}{9c} = \frac{7}{9}$ #### (d) $E(X) = Σ x * pX(x)$ $E(X) = 1 * pX(1) + 2 * pX(2) + 3 * pX(3)=46c$ $E(Y) = Σ x * pY(y)$ $E(Y) = 1 * pY(1) + 2 * pY(2) =33c$ 帶入$c=\frac{1}{21}$ $E(X)=\frac{46}{21}$ $E(Y)=\frac{33}{21}$ ## Problem 2 ### 題目 > Two fair dice are rolled. The sum of the outcome is denoted by X and the absolute value of the difference by Y. Calculate the joint probability mass function of X and Y and the marginal probability mass functions of X and Y. ### 解答 $X=2~P(X=2,Y=0)=P(A=1,B=1)=\frac{1}{36}$ $X=3~P(X=3,Y=1)=P(A=1,B=2)+P(A=2,B=1)=\frac{2}{36}$ $X=4$ $~P(X=4,Y=0)=P(A=2,B=2)+P(A=3,B=1)=\frac{2}{36}$ $~P(X=4,Y=1)=P(A=3,B=1)+P(A=4,B=0)=\frac{2}{36}$ $X=5$ $~P(X=5,Y=1)=P(A=2,B=3)+P(A=3,B=2)=\frac{2}{36}$ $~P(X=5,Y=3)=P(A=1,B=4)+P(A=4,B=1)=\frac{2}{36}$ $X=6$ $~P(X=6,Y=0)=P(A=3,B=3)=\frac{1}{36}$ $~P(X=6,Y=2)=P(A=2,B=4)+P(A=4,B=2)=\frac{2}{36}$ $~P(X=6,Y=4)=P(A=1,B=5)+P(A=5,B=1)=\frac{2}{36}$ $X=7$ $~P(X=7,Y=1)=P(A=3,B=4)+P(A=4,B=3)=\frac{2}{36}$ $~P(X=7,Y=3)=P(A=2,B=5)+P(A=5,B=2)=\frac{2}{36}$ $~P(X=7,Y=5)=P(A=1,B=6)+P(A=6,B=1)=\frac{2}{36}$ $X=8$ $~P(X=8,Y=0)=P(A=4,B=4)=\frac{1}{36}$ $~P(X=8,Y=2)=P(A=3,B=5)+P(A=5,B=3)=\frac{2}{36}$ $~P(X=8,Y=4)=P(A=2,B=6)+P(A=6,B=2)=\frac{2}{36}$ $~P(X=8,Y=6)=P(A=1,B=7)+P(A=7,B=1)=\frac{2}{36}$ $X=9$ $~P(X=9,Y=1)=P(A=4,B=5)+P(A=5,B=4)=\frac{2}{36}$ $~P(X=9,Y=3)=P(A=3,B=6)+P(A=6,B=3)=\frac{2}{36}$ $~P(X=9,Y=5)=P(A=2,B=7)+P(A=7,B=2)=\frac{2}{36}$ $~P(X=9,Y=7)=P(A=1,B=8)+P(A=8,B=1)=\frac{2}{36}$ $X=10$ $~P(X=10,Y=0)=P(A=5,B=5)=\frac{1}{36}$ $~P(X=10,Y=2)=P(A=4,B=6)+P(A=6,B=4)=\frac{2}{36}$ $~P(X=10,Y=4)=P(A=3,B=7)+P(A=7,B=3)=\frac{2}{36}$ $~P(X=10,Y=6)=P(A=2,B=8)+P(A=8,B=2)=\frac{2}{36}$ $~P(X=10,Y=8)=P(A=1,B=9)+P(A=9,B=1)=\frac{2}{36}$ $X=11$ $~P(X=11,Y=1)=P(A=5,B=6)+P(A=6,B=5)=\frac{2}{36}$ $~P(X=11,Y=3)=P(A=4,B=7)+P(A=7,B=4)=\frac{2}{36}$ $~P(X=11,Y=5)=P(A=3,B=8)+P(A=8,B=3)=\frac{2}{36}$ $~P(X=11,Y=7)=P(A=2,B=9)+P(A=9,B=2)=\frac{2}{36}$ $~P(X=11,Y=9)=P(A=1,B=10)+P(A=10,B=1)=\frac{2}{36}$ $X=12$ $~P(X=12,Y=0)=P(A=6,B=6)=\frac{1}{36}$ $~P(X=12,Y=2)=P(A=5,B=7)+P(A=7,B=5)=\frac{2}{36}$ $~P(X=12,Y=4)=P(A=4,B=8)+P(A=8,B=4)=\frac{2}{36}$ $~P(X=12,Y=6)=P(A=3,B=9)+P(A=9,B=3)=\frac{2}{36}$ $~P(X=12,Y=8)=P(A=2,B=10)+P(A=10,B=2)=\frac{2}{36}$ $~P(X=12,Y=10)=P(A=1,B=11)+P(A=11,B=1)=\frac{2}{36}$ $P(X=2)=\frac{1}{36}$ $P(X=3)=\frac{2}{36}$ $P(X=4)=\frac{3}{36}$ $P(X=5)=\frac{4}{36}$ $P(X=6)=\frac{5}{36}$ $P(X=7)=\frac{6}{36}$ $P(X=8)=\frac{7}{36}$ $P(X=9)=\frac{8}{36}$ $P(X=10)=\frac{9}{36}$ $P(X=11)=\frac{10}{36}$ $P(X=12)=\frac{11}{36}$ $P(Y=0)=\frac{6}{36}$ $P(Y=1)=\frac{10}{36}$ $P(Y=2)=\frac{8}{36}$ $P(Y=3)=\frac{8}{36}$ $P(Y=4)=\frac{8}{36}$ $P(Y=5)=\frac{6}{36}$ $P(Y=6)=\frac{6}{36}$ $P(Y=7)=\frac{4}{36}$ $P(Y=8)=\frac{4}{36}$ $P(Y=9)=\frac{2}{36}$ $P(Y=10)=\frac{2}{36}$ ## Problem 3 ### 題目 > Let the joint probabilty density fuction of random variable X and Ybe given by > f(x,y) =2 if 0<=y<=x<=1 > = 0 otherwise > (a) Calculate the marginal probability density duction of X and respintivelty > (b) Find(X) and E(Y) > ( c) Calcuate P(x<$\frac{1}{2}$),P(X<2Y),and P(X=Y) > (d)Are X and Y independent? Why or why not? > (e) $f_{X|Y}(x|y)$ ### 解答 #### a $f_X(x) = ∫_0^1 f(x,y) dy = ∫\_0^x 2 dy = 2x,0 <= x <= 1$ $f_Y(y) = ∫_y^1 f(x,y) dx = ∫\_y^1 2 dx = 2(1-y),0 <= y <= 1$ #### b $E(X)=∫_0^1{x*f_X(x)}dx=\frac{2}{3}$ $E(Y)=∫_0^1{x*f_Y(u)}dy=\frac{1}{3}$ #### c $P(x<1/2)=∫_0^{\frac{1}{2}}f_X(x)dx=\frac{1}{4}$ $P(X<2Y)=∫_0^{1}∫_0^{2y}f(x,y)dxdy=2$ $P(X<2Y)=∫_0^{1}f(x,x)dxd=2$ #### d 不互相獨立 再給特定Y條件下,X的取直受到Y影響,如P(X<2Y) $f_{X|Y}(x|y) = \frac{f(x,y)}{f\_Y(y)} = \frac{2}{2(1-y)} = \frac{1}{1-y}若0 <= y <= x <= 1$ $f\_{X|Y}(x|y) = 0$, ## Problem 4 ### 題目 >Let the joint probabilty mass fuction of random variable X and Ybe given by >p(x,y) >=$\frac{1}{7}x^2$ if (x,y)==(1,1),(1,2),(2,1) >=0 otherwise >Are X and Y indenpendent? Why or why not ### 解答 PMF of X: $P(X = 1) = p(1,1) + p(1,2) = \frac{1}{7}1^2 + \frac{1}{7}1^2 = \frac{2}{7}$ $P(X = 2) = p(2,1) = \frac{1}{7}(2^2) = \frac{4}{7}$ Marginal PMF of Y: $P(Y = 1) = p(1,1) + p(2,1) = \frac{1}{7}(1^2) +\frac{1}{7}(2^2) = \frac{5}{7}$ $P(Y = 2) = p(1,2) = \frac{1}{7}(1^2) = \frac{1}{7}$ $P(X = x) * P(Y = y) = \frac{}{7} * \frac{5}{7} = 10/49$ $P(X,Y) ≠ P(X) * P(Y)$ $P(1,1) = \frac{1}{7} ≠ \frac{10}{49}.$ X and Y are not independent because the joint probability mass function cannot be factored into the product of their individual probability mass functions. ## Problem 5 ### 題目 >Let the joint probabilty density fuction of random variable X and Ybe given by >p(x,y) >=$2e^{-(x+2y)}$ if x>=0 y>=0 >=0 otherwise >find E((X^2)Y) ### 解答 $E((X^2)Y) = ∫∫ (x^2)y * p(x,y) dx dy$ $E((X^2)Y) = ∫∫ (x^2)y * 2e^{-(x+2y)} dx dy$ $E((X^2)Y) = ∫∫ (2x^2)y * e^{-(x+2y)} dx dy$ $E((X^2)Y) = ∫_0^∞∫_0^∞ (2x^2)y * e^{-(x+2y)} dx dy$ $E((X^2)Y) = ∫_0^∞ (y * e^{-2y}) ∫_0^∞ (2x^2 * e^{-x}) dx dy$ $E((X^2)Y) = ∫_0^∞ (y * e^{-2y}) * Γ(3) dy$ $Γ(3)=2$ $A: \frac{3*\pi}{2}$ ## Problem 6 ### 題目 >Let the joint probabilty mass fuction of discreate random variable X and Ybe given by >p(x,y) >=$\frac{1}{25}{x^2+y^2}$ if x=1,2 y=0,1,2 >=0 otherwise >find p_{x|y}(x|y),P(X=2| Y=1 ),and E(X|Y=1) ### 解答 $P(Y=0) = p(1,0) + p(2,0) = \frac{1}{25}(1^2+0^2) + \frac{1}{25}(2^2+0^2) = \frac{1}{25} + \frac{4}{25} = \frac{5}{25} = \frac{1}{5}$ $P(Y=1) = p(1,1) + p(2,1) = \frac{1}{25}(1^2+1^2) + \frac{1}{25}(2^2+1^2) = \frac{2}{25} + \frac{5}{25} = \frac{7}{25}$ $P(Y=2) = p(1,2) + p(2,2) = \frac{1}{25}(1^2+2^2) + \frac{1}{25}(2^2+2^2) = \frac{5}{25} + \frac{8}{25} = \frac{13}{25}$ $P(X=1|Y=0) = \frac{p(1,0)}{P(Y=0)} = \frac{\frac{1}{25}(1^2+0^2)}{\frac{1}{5}} = \frac{\frac{1}{25}}{\frac{1}{5}} = \frac{1}{5}$ $P(X=2|Y=0) = \frac{p(2,0)}{P(Y=0)} = \frac{\frac{1}{25}(2^2+0^2)}{\frac{1}{5}} = \frac{\frac{4}{25}}{\frac{1}{5}} = \frac{4}{5}$ $P(X=1|Y=1) = \frac{p(1,1)}{P(Y=1)} = \frac{\frac{1}{25}(1^2+1^2)}{\frac{7}{25}} = \frac{\frac{2}{25}}{\frac{7}{25}} = \frac{2}{7}$ $P(X=2|Y=1) = \frac{p(2,1)}{P(Y=1)} = \frac{\frac{1}{25}(2^2+1^2)}{\frac{7}{25}} = \frac{\frac{5}{25}}{\frac{7}{25}} = \frac{5}{7}$ $P(X=1|Y=2) = \frac{p(1,2)}{P(Y=2)} = \frac{\frac{1}{25}(1^2+2^2)}{\frac{13}{25}} = \frac{\frac{5}{25}}{\frac{13}{25}} = \frac{5}{13}$ $P(X=2|Y=2) = \frac{p(2,2)}{P(Y=2)} = \frac{\frac{1}{25}(2^2+2^2)}{\frac{13}{25}} = \frac{\frac{8}{25}}{\frac{13}{25}} = \frac{8}{13}$ $P(X=2|Y=1) = \frac{5}{7}$ $E(X|Y=1) = ∑x (x * P(X=x|Y=1)) = 1 * P(X=1|Y=1) + 2 * P(X=2|Y=1) = 1 * \frac{2}{7} + 2 * (5/7) =\frac{2}{7} + \frac{10}{7} = \frac{12}{7}$ ## Problem 7 ### 題目 > A Point(X,Y) is elected randomly from the triangle with vertices (0,0)(1,0) > (a) Find The joint probablity density function of X and Y > (b) Calculate f_{x|y}(x|y) > (c) Evaluate E(X|Y=y) ### 解答 $f(x,y)=\int\_0^1\int\_0^{-x+1}cdydx =c\int\_0^1(-x+1)dx =c(-\frac{1}{2}x^2+x)|\_0^1 =c(-\frac{1}{2}+1)=$ $\frac{c}{2}=1 \therefore c=2 f(x,y)=\begin{cases}2\quad,0\le x\le 1,y\le-x+1\\0\quad,O.W.\end{cases} f_{X|Y}(x|y)=\dfrac{f(x,y)}{f\_Y(y)}$ $=\begin{cases}\frac{2}{-2y+2}\quad,0\le x\le 1, y\le -x+1\\0\quad,O.W.\end{cases} =\begin{cases}\frac{1}{-y+1}\quad,0\le x\le 1, y\le -x+1\\0\quad,O.W.\end{cases}$ $E(X|Y=y)=\int\_{-\infty}^{\infty}xf_{X|Y}(x|y)dx =\int\_0^1x\cdot\frac{1}{-y+1}dx =\frac{1}{-y+1}\cdot\frac{1}{2}(x^2)|\_0^1 =\frac{1}{-2y+2}$