# 機率HW 8 110590064 資工二 劉韶軒 ## Problem 1 ### 原文題目 > Suppose that 15 points are selected at random and independently from the interval (0, 1). In average, how many of them will be greater than 3/4? ### 中文題目 > 假設有15個點是獨立地從區間(0, 1)中隨機選擇的。平均而言,有多少個點會大於3/4? ### 解決方式 期望值計算公式:$E=P*Val$ $15 × \frac{1}{4} = \frac{15}{4} = 3.75$ ## Problem 2 ### 原文題目 > A point is selected at random on a line segment of length k. What is the probability that none of the two segments is smaller than k/3? ### 中文題目 > 在長度為k的線段上隨機選擇一個點。兩個線段都不小於k/3的機率是多少? ### 解決方式 左邊線段必須讓切斷點x>$\frac{k}{3}$ 右邊線斷臂旭讓切斷點x<$\frac{2k}{3}$ 所以切斷點範圍$\frac{k}{3}$<x<$\frac{2k}{3}$ 所以我們可以得出x/k = $\frac{k}{3}$ ## Problem 3 ### 原文題目 > Let X be a random number from (0, 1). Find the density functions of Y = -ln(1 - X ) . ### 中文題目 > 設X是從(0, 1)中的隨機數。找出Y = -ln(1 - X)的概率密度函數 ### 解決方式 $CDF(Y) = P(Y ≤ x) = P(-ln(1 - X) ≤ x)$ $1 - X ≥ e^{-y}$ $- X ≥ e^{-y} - 1$ $X ≥ 1 - e^{-y}$ $F_X(x) = P(X ≤ x) = x$ $F_Y(y) = P(Y ≤ y) = P(-ln(1 - X) ≤ y) = P(X ≥ 1 - e^(-y)) = 1 - (1 - e^(-y)) = e^(-y)$ $f_Y(y) = \frac{d F_Y(y)}{dy} = -e^{-y}$ ## Problem 4 ### 原文題目 Let Z be a standard normal random variable and α be a given constant. Find the real number x that maximizes P(x < Z < x + α). ### 中文題目 ### 解決方式 $φ(z) = (1 / √(2π)) * e^{\frac{-z^2}{2}}$ $P(x < Z < x + α) = ∫_{x}^{x+α} φ(z) dz$ $d/dx P(x < Z < x + α) = d/dx ∫_{x}^{x+α} φ(z) dz= φ(x+α) * (d/dx (x+α)) - φ(x) * (d/dx)$ $φ(x+α) - φ(x) = 0$ 對稱分布$φ(-z) = φ(z)$ $x + α = -x,x = -α/2$ ## Problem 5 ### 原文題目 > The grades for a certain exam are normally distributed with mean 67 and variance 64. What percent of students get A(≥ 90), B(80 - 90), C(70 - 80), D(60 - 70), and F(< 60)? ### 解決方式 $Z= \frac{X−μ}{σ}$ $σ = \sqrt{64}=8$ $Z_{90}=\frac{90-67}{8}=2.875$ $Z_{80}=\frac{90-67}{8}=1.625$ $Z_{70}=\frac{90-67}{8}=0.375$ $Z_{60}=\frac{90-67}{8}=-0.875$ $A(≥ 90)=1-P(Z<2.875)=0.003$ $A(80-90)=P(1.625<Z<2.875)$ $A(70-80)=P(0.375<Z<1.625)$ $A(60-70)=P(-0.875<Z<0.375)$ $A(<60)=P(Z<-0.875)$ ## Problem 6 ### 原文題目 Let ~ (N,$σ^2$). Prove that P(| X - μ |> kσ ) does not depend on μ or σ . ### 解決方式 Z = $\frac{X - μ}{σ}$为X的标准化值。Z均值为0 $P(|X - μ| > kμ) = P(|\frac{X - μ}{σ}| > k)$ Z = $\frac{X - μ}{σ}$ 这意味着它对正态分布的均值和标准差的变化是不变的。 ## Problem 7 ### 原文題目 Let X ~ N(0,1) . Calculate the probability density function of Y = $sqrt{|X|}$. ### 解決方式 $P(Y≤y)=P(|X|≤\sqrt{y})=P(|X|≤y2)=P(−y^2≤X≤y^2)=P(X≤y^2)−P(X<−y^2)=Φ(y^2)−Φ(−y^2)$ $g(y)=\frac{dP(Y≤y)}{dy}=2yϕ(y2)+2yϕ(−y2)=4yϕ(y2)$ symmetry of ϕ(x) around x=0 ## Problem 8 ### 原文題目 > $LetX~be~an~exponential~random~variable~with~parameter~a~,~mean~E(X)~and~standard~deviation~\\σ_X .~Find~P(|X- E(X) | 2σ_X )$ ### 解決方式 $E(X)=\frac{1}{a},σ_X = \frac{1}{a}$ $P(|X - E(X)| ≤ 2σ_X)。$ $f_X(x) = \frac{1}{a} * e^{\frac{-x}{a}}$ $|X - E(X)| = |X - 1/a|$ $when~X >\frac{1}{a} ,X - \frac{1}{a} > 0,|X - \frac{1}{a}| = X - \frac{1}{a}。$ $when~X ≤ \frac{1}{a} ,X - \frac{1}{a} ≤ 0,|X - \frac{1}{a}| = -(X - \frac{1}{a}) = \frac{1}{a} - X。$ $P(X - \frac{1}{a} ≤ 2σ_X) = P(X - \frac{1}{a} ≤ \frac{2}{a}) = P(X ≤ \frac{3}{a})$ $P(X ≤ 3/a) = 1 - e^{-3/a}$ $P(|X - E(X)| ≤ 2σ_X) = P(X -\frac{1}{a} ≤ 2σ_X) + P(\frac{1}{a} - X ≤ 2σ_X) = (1 - e^{\frac{-3}{a}}) + 1$ $P(|X - E(X)| ≤ 2σ_X) = 2 - e^\frac{-3}{a}$