# 201909. Week7 ###### tags: `ML讀書會` # 本週作業 1. 上周意識到直接講LSTM有點太難,感覺大家還並未熟悉這塊DL,所以線上課程主要以教大家如何應用LSTM為主 * 多層LSTM 模型預測 * Uber's 流量預測所使用的RNN架構 3. 若對LSTM理論有興趣的朋友,相關文件列在下面,有問題再來找我討論囉~ * [201909W7線上課程連結](https://www.youtube.com/watch?v=Lkcxtf2AZzQ&feature=youtu.be) * [201909W7線上課程code連結](https://colab.research.google.com/drive/1yw_X3DU8KtW5-YKlpz_rrz1YlKhsY9qS) 5. [實機作業 & Q&A] * 本週實機作業,meeting時間公布 6. Reference * [lstm autoencoder ](https://machinelearningmastery.com/lstm-autoencoders/) * [lstm autoencoder2 ](https://towardsdatascience.com/step-by-step-understanding-lstm-autoencoder-layers-ffab055b6352) * [LSTM Model Architecture for Rare Event Time Series Forecasting paper](http://roseyu.com/time-series-workshop/submissions/TSW2017_paper_3.pdf) * [LSTM Model Architecture for Rare Event Time Series Forecasting blog](https://eng.uber.com/neural-networks/) * [lstm理論內容1](http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * [lstm理論內容2](https://www.zybuluo.com/hanbingtao/note/581764)