linux2020
目的: 檢驗學員對 bitwise 操作, 指標操作, 前置處理器應用 的認知
1
考慮到以下 bitcpy
實作,允許開發者對指定的記憶體區域,逐 bit 進行資料複製:
#include <stdint.h>
#include <stdio.h>
#include <string.h>
void bitcpy(void *_dest, /* Address of the buffer to write to */
size_t _write, /* Bit offset to start writing to */
const void *_src, /* Address of the buffer to read from */
size_t _read, /* Bit offset to start reading from */
size_t _count)
{
uint8_t data, original, mask;
size_t bitsize;
size_t read_lhs = _read & 7;
size_t read_rhs = 8 - read_lhs;
const uint8_t *source = _src + (_read / 8);
size_t write_lhs = _write & KK1;
size_t write_rhs = 8 - write_lhs;
uint8_t *dest = _dest + (_write / 8);
static const uint8_t read_mask[] = {
0x00, /* == 0 00000000b */
0x80, /* == 1 10000000b */
0xC0, /* == 2 11000000b */
0xE0, /* == 3 11100000b */
0xF0, /* == 4 11110000b */
0xF8, /* == 5 11111000b */
0xFC, /* == 6 11111100b */
0xFE, /* == 7 11111110b */
0xFF /* == 8 11111111b */
};
static const uint8_t write_mask[] = {
0xFF, /* == 0 11111111b */
0x7F, /* == 1 01111111b */
0x3F, /* == 2 00111111b */
0x1F, /* == 3 00011111b */
0x0F, /* == 4 00001111b */
0x07, /* == 5 00000111b */
0x03, /* == 6 00000011b */
0x01, /* == 7 00000001b */
0x00 /* == 8 00000000b */
};
while (_count > 0) {
data = *source++;
bitsize = (_count > 8) ? 8 : _count;
if (read_lhs > 0) {
data <<= read_lhs;
if (bitsize > read_rhs)
data |= (*source >> read_rhs);
}
if (bitsize < 8)
data &= read_mask[bitsize];
original = *dest;
if (write_lhs > 0) {
mask = read_mask[write_lhs];
if (bitsize > write_rhs) {
*dest++ = (original & mask) | (data >> write_lhs);
original = *dest & write_mask[bitsize - write_rhs];
*dest = original | (data << write_rhs);
} else {
if ((bitsize - write_lhs) > 0)
mask = mask | write_mask[8 - (bitsize - write_lhs)];
*dest++ = (original & mask) | (data >> write_lhs);
}
} else {
if (bitsize < 8)
data = data | (original & write_mask[bitsize]);
*dest++ = data;
}
_count -= KK2;
}
}
對應的測試程式碼:
static uint8_t output[8], input[8];
static inline void dump_8bits(uint8_t _data)
{
for (int i = 0; i < 8; ++i)
printf("%d", (_data & (0x80 >> i)) ? 1 : 0);
}
static inline void dump_binary(uint8_t *_buffer, size_t _length)
{
for (int i = 0; i < _length; ++i)
dump_8bits(*_buffer++);
}
int main(int _argc, char **_argv)
{
memset(&input[0], 0xFF, sizeof(input));
for (int i = 1; i <= 32; ++i) {
for (int j = 0; j < 16; ++j) {
for (int k = 0; k < 16; ++k) {
memset(&output[0], 0x00, sizeof(output));
printf("%2d:%2d:%2d ", i, k, j);
bitcpy(&output[0], k, &input[0], j, i);
dump_binary(&output[0], 8);
printf("\n");
}
}
}
return 0;
}
測試程式碼的參考輸出:
1: 0: 0 1000000000000000000000000000000000000000000000000000000000000000
1: 1: 0 0100000000000000000000000000000000000000000000000000000000000000
1: 2: 0 0010000000000000000000000000000000000000000000000000000000000000
...
1:15: 0 0000000000000001000000000000000000000000000000000000000000000000
1: 0: 1 1000000000000000000000000000000000000000000000000000000000000000
1: 1: 1 0100000000000000000000000000000000000000000000000000000000000000
1: 2: 1 0010000000000000000000000000000000000000000000000000000000000000
...
1:15: 1 0000000000000001000000000000000000000000000000000000000000000000
...
請補完程式碼。
作答區
KK1 = ?
(a)
1(b)
2(c)
3(d)
4(e)
5(f)
6(g)
7(h)
8KK2 = ?
(a)
1(b)
-1(c)
0xFF(d)
bitsize(e)
write_rhs(f)
write_lhs延伸問題:
提示: 觀察 linux/bitops.h 裡頭巨集在原始程式碼的運用狀況
2
考慮到一個針對空間處理最佳化的 vector 實作
支援以下操作:
vec_push_back
: 新增元素至 vector 的尾端,必要時會進行記憶體配置;vec_pop_back()
: 刪除 vector 最尾端的元素;每個 vector 都有兩個重要的屬性:
使用示範:
int main()
{
v(float, 3, vec1);
v(int, 2, vec2, 13, 42);
printf("pos(vec2,0)=%d, pos(vec2,1)=%d\n", vec_pos(vec2, 0),
vec_pos(vec2, 1));
vec_push_back(vec2, 88);
vec_reserve(vec2, 100);
printf("capacity(vec1)=%zu, capacity(vec2)=%zu\n", vec_capacity(vec1),
vec_capacity(vec2));
printf("pos(vec2,2)=%d\n", vec_pos(vec2, 2));
#define display(v) \
do { \
for (size_t i = 0; i < vec_size(v); i++) \
printf("%.2f ", vec_pos(v, i)); \
puts(v.on_heap ? "heap" : "stack"); \
} while (0)
display(vec1);
vec_push_back(vec1, 0.0);
display(vec1);
vec_push_back(vec1, 1.1);
display(vec1);
vec_push_back(vec1, 2.2);
display(vec1);
vec_push_back(vec1, 3.3);
display(vec1);
vec_push_back(vec1, 4.4);
display(vec1);
vec_push_back(vec1, 5.5);
display(vec1);
vec_pop_back(vec1);
display(vec1);
vec_pop_back(vec1);
display(vec1);
vec_pop_back(vec1);
display(vec1);
vec_pop_back(vec1);
display(vec1);
vec_pop_back(vec1);
display(vec1);
vec_pop_back(vec1);
display(vec1);
return 0;
}
預期輸出:
pos(vec2,0)=13, pos(vec2,1)=42
capacity(vec1)=4, capacity(vec2)=128
pos(vec2,2)=88
stack
0.00 stack
0.00 1.10 stack
0.00 1.10 2.20 stack
0.00 1.10 2.20 3.30 stack
0.00 1.10 2.20 3.30 4.40 heap
0.00 1.10 2.20 3.30 4.40 5.50 heap
0.00 1.10 2.20 3.30 4.40 heap
0.00 1.10 2.20 3.30 heap
0.00 1.10 2.20 heap
0.00 1.10 heap
0.00 heap
heap
本體的實作程式如下:
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* vector with small buffer optimization */
#define STRUCT_BODY(type) \
struct { \
size_t size : 54, on_heap : 1, capacity : 6, flag1 : 1, flag2 : 1, \
flag3 : 1; \
type *ptr; \
}
#define NEXT_POWER_OF_2(s) \
VV1 \
? s \
: (size_t) 1 << (64 - __builtin_clzl(s)) /* next power of 2 */
#define v(t, s, name, ...) \
union { \
STRUCT_BODY(t); \
struct { \
size_t filler; \
t buf[NEXT_POWER_OF_2(s)]; \
}; \
} name __attribute__((cleanup(vec_free))) = {.buf = {__VA_ARGS__}}; \
name.size = sizeof((__typeof__(name.buf[0])[]){0, __VA_ARGS__}) / \
sizeof(name.buf[0]) - 1; \
name.capacity = sizeof(name.buf) / sizeof(name.buf[0])
#define vec_size(v) v.size
#define vec_capacity(v) \
(v.on_heap ? (size_t) 1 << v.capacity : sizeof(v.buf) / sizeof(v.buf[0]))
#define vec_data(v) (v.on_heap ? v.ptr : v.buf) /* always contiguous buffer */
#define vec_elemsize(v) sizeof(v.buf[0])
#define vec_pos(v, n) vec_data(v)[n] /* lvalue */
#define vec_reserve(v, n) __vec_reserve(&v, n, vec_elemsize(v), vec_capacity(v))
#define vec_push_back(v, e) \
__vec_push_back(&v, &(__typeof__(v.buf[0])[]){e}, vec_elemsize(v), \
vec_capacity(v))
#define vec_pop_back(v) (void) (VV2)
/* This function attribute specifies function parameters that are not supposed
* to be null pointers. This enables the compiler to generate a warning on
* encountering such a parameter.
*/
#define NON_NULL __attribute__((nonnull))
static NON_NULL void vec_free(void *p)
{
STRUCT_BODY(void) *s = p;
if (s->on_heap)
free(s->ptr);
}
static inline int ilog2(size_t n)
{
return 64 - __builtin_clzl(n) - ((n & (n - 1)) == 0);
}
static NON_NULL void __vec_reserve(void *vec,
size_t n,
size_t elemsize,
size_t capacity)
{
union {
STRUCT_BODY(void);
struct {
size_t filler;
char buf[];
};
} *v = vec;
if (n > capacity) {
if (v->on_heap) {
v->ptr = realloc(v->ptr,
elemsize * (size_t) 1 << (v->capacity = ilog2(n)));
} else {
void *tmp =
malloc(elemsize * (size_t) 1 << (v->capacity = ilog2(n)));
memcpy(tmp, v->buf, elemsize * v->size);
v->ptr = tmp;
v->on_heap = 1;
}
}
}
static NON_NULL void __vec_push_back(void *restrict vec,
void *restrict e,
size_t elemsize,
size_t capacity)
{
union {
STRUCT_BODY(char);
struct {
size_t filler;
char buf[];
};
} *v = vec;
if (v->on_heap) {
if (v->size == capacity)
v->ptr = realloc(v->ptr, elemsize * (size_t) 1 << ++v->capacity);
memcpy(&v->ptr[v->size++ * elemsize], e, elemsize);
} else {
if (v->size == capacity) {
void *tmp =
malloc(elemsize * (size_t) 1 << (v->capacity = capacity + 1));
memcpy(tmp, v->buf, elemsize * v->size);
v->ptr = tmp;
v->on_heap = 1;
memcpy(&v->ptr[v->size++ * elemsize], e, elemsize);
} else
memcpy(&v->buf[v->size++ * elemsize], e, elemsize);
}
}
請補完程式碼。
參閱 你所不知道的C語言:技巧篇 以得知 GCC extension: attribute cleanup 使用技巧。
作答區
VV1 =
(a)
s(b)
s - 1(c)
s & (s - 1)(d)
(s & (s - 1)) == 0VV2 =
(a)
v.size -= 1
(b)
v.capacity--
延伸問題:
指令集是 CPU 指令所組成的集合,可極縮至一指令 (OISC) 並達成圖靈完備,已用於同態加密晶片、可堆疊 FPGA 多核處理器,及經微碼擴充到 RISC-V 且通過形式化驗證的實作。NISC 與 ZISC 分別靠編譯器靜態排程與硬體向量比對取代指令解碼,換得低功耗與高吞吐;近期研究亦將單指令 FLEQ 硬編碼於迴圈 Transformer,顯示深度模型可直接充任通用運算主體。極簡控制邏輯正成為雲端隱私運算與專用加速器的技術選項。
Jun 5, 2025本文探討 spinlock 本身的效能和可擴展能力 (scalability) 議題
Jun 4, 2025本講座則是專注於作業系統領域,同時,"Microkernel" 也不全然指其 "micro" 微小之意,而且是探討相對於傳統 Monolithic kernel 的 Microkernel
Jun 3, 2025解說錄影: Part 1 / Part 2 / Part 3 / Part 4 / Part 5/ Part 6 / Part 7
May 30, 2025or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up