# Jetson AGX Xavier ## 1. Installing Ubuntu 18.04 on Jetson AGX Refs: [youtube](https://www.youtube.com/watch?v=drBKVbOmPEk) [jetson hack github](https://github.com/jetsonhacks/bootFromExternalStorage) ## 2. Installation Notes - 32gb internal emmc disk is accidentally formatted without any backup, sorry for this huge blunder, but Ubuntu 18.04 can be booted up directly via ssd 500gb - Jetpack is installed via apt - opencv4 has been installed, even contrib is installed - ros version is melodic, cv_bridge with 20.04 might hard to work with I guess - git is set up to ical account, which is tested that can push project on ical gitlab - user.name: ical - user.email:nukical@gmail.com - ssh-key comment: ical_xavier_agx_sylvex (i have no idea how to name this so...) ## 3. Tasks 1. yolo testing - dataset http://140.127.205.183:5000/sharing/OE4Umn0kv cuda cudnn, gpu is configured true in darknet config .bashrc is configured for cuda and cudnn - training ![training](https://i.imgur.com/xc0zA6T.png) With Default Desktop Power Settings Pic_num=8, max_batch=1500, classes=3 start from: 22:38 to the next day 00:14 time_elapsed: 1hr36mins - recognising one of prediction -1.397 secs ![pic 4 prediction](https://i.imgur.com/YprHSP1.jpg) ```./darknet detector test ../yolo_mark/train.data ../yolo_mark/yolov3-tiny-train.cfg ../yolo_mark/shape/model/yolov3-tiny-train_last.weights ../yolo_mark/shape/img/4.JPG ``` LOG: ``` CUDA-version: 10020 (10020), cuDNN: 8.2.1, CUDNN_HALF=1, GPU count: 1 CUDNN_HALF=1 OpenCV version: 4.1.1 0 : compute_capability = 720, cudnn_half = 1, GPU: Xavier net.optimized_memory = 0 mini_batch = 1, batch = 32, time_steps = 1, train = 0 layer filters size/strd(dil) input output 0 Create CUDA-stream - 0 Create cudnn-handle 0 conv 16 3 x 3/ 1 640 x 480 x 3 -> 640 x 480 x 16 0.265 BF 1 max 2x 2/ 2 640 x 480 x 16 -> 320 x 240 x 16 0.005 BF 2 conv 32 3 x 3/ 1 320 x 240 x 16 -> 320 x 240 x 32 0.708 BF 3 max 2x 2/ 2 320 x 240 x 32 -> 160 x 120 x 32 0.002 BF 4 conv 64 3 x 3/ 1 160 x 120 x 32 -> 160 x 120 x 64 0.708 BF 5 max 2x 2/ 2 160 x 120 x 64 -> 80 x 60 x 64 0.001 BF 6 conv 128 3 x 3/ 1 80 x 60 x 64 -> 80 x 60 x 128 0.708 BF 7 max 2x 2/ 2 80 x 60 x 128 -> 40 x 30 x 128 0.001 BF 8 conv 256 3 x 3/ 1 40 x 30 x 128 -> 40 x 30 x 256 0.708 BF 9 max 2x 2/ 2 40 x 30 x 256 -> 20 x 15 x 256 0.000 BF 10 conv 512 3 x 3/ 1 20 x 15 x 256 -> 20 x 15 x 512 0.708 BF 11 max 2x 2/ 1 20 x 15 x 512 -> 20 x 15 x 512 0.001 BF 12 conv 1024 3 x 3/ 1 20 x 15 x 512 -> 20 x 15 x1024 2.831 BF 13 conv 256 1 x 1/ 1 20 x 15 x1024 -> 20 x 15 x 256 0.157 BF 14 conv 512 3 x 3/ 1 20 x 15 x 256 -> 20 x 15 x 512 0.708 BF 15 conv 24 1 x 1/ 1 20 x 15 x 512 -> 20 x 15 x 24 0.007 BF 16 yolo [yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00 17 route 13 -> 20 x 15 x 256 18 conv 128 1 x 1/ 1 20 x 15 x 256 -> 20 x 15 x 128 0.020 BF 19 upsample 2x 20 x 15 x 128 -> 40 x 30 x 128 20 route 19 8 -> 40 x 30 x 384 21 conv 256 3 x 3/ 1 40 x 30 x 384 -> 40 x 30 x 256 2.123 BF 22 conv 24 1 x 1/ 1 40 x 30 x 256 -> 40 x 30 x 24 0.015 BF 23 yolo [yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00 Total BFLOPS 9.676 avg_outputs = 577400 Allocate additional workspace_size = 52.44 MB Loading weights from ../yolo_mark/shape/model/yolov3-tiny-train_last.weights... seen 64, trained: 48 K-images (0 Kilo-batches_64) Done! Loaded 24 layers from weights-file Detection layer: 16 - type = 28 Detection layer: 23 - type = 28 ../yolo_mark/shape/img/4.JPG: Predicted in 1397.593000 milli-seconds. ``` benchmark video: ```./darknet detector demo cfg/coco.data yolov4-tiny.cfg yolov4-tiny.weights test.mp4 -ext_output -c 0 -mjpeg_port 8090 -dont_show``` - using yolov4-tiny model - Video stream: 1280 x 720 - FPS:128.1 AVG_FPS:123.7