<style> .reveal section p { display: inline-block; font-size: 0.6em; line-height: 1.2em; vertical-align: top; } .reveal section ul { font-size: 0.6em; } </style> <!-- TIPS https://hackmd.io/s/how-to-create-slide-deck https://hackmd.io/slide-example https://revealjs.com/demo/ https://revealjs.com/themes/ Just paste images in - it autouploads to imgur Images without borders: <img style="border:none; box-shadow:none" src="" width="100"> --> <a href="https://hackmd.io/@swarm/vre-webinar-slides">:film_projector: Full view</a> --- <a href="https://hackmd.io/@swarm/vre-webinar-slides?print-pdf">:page_with_curl: PDF print</a> </small> # Swarm VRE > ashley.smith@ed.ac.uk > [GH: @smithara](https://github.com/smithara) > All this is made possible by the work from EOX > I am just providing some sugar on top! > martin.paces@eox.at <table><tr> <td><a href="https://earth.esa.int/eogateway/activities/swarm-disc"> <img style="border:none; box-shadow:none;" src="https://i.imgur.com/zI81dHt.png" width="140"></a></td> <td><a href="https://eox.at"> <img style="border:none; box-shadow:none" src="https://i.imgur.com/XwxxcTf.png" width="170"></a></td> </tr></table> --- ![](https://i.imgur.com/nEfuGTS.png) https://earth.esa.int/eogateway/tools/swarm-vre ---- ( Demo in VirES GUI then moving to VRE ) - [VirES](https://vires.services): browsing datasets; configuring data; configuring models; configuring plots; uploading & downloading - [VRE](https://vre.vires.services): JupyterLab evironment with a pre-configured open source software stack to use with Swarm - [`viresclient`](https://viresclient.readthedocs.io/en/latest/installation.html) provides access to VirES - you can alternatively install it in your own Python environment --- ### Get data in a few lines of Python: `viresclient` package Install it anywhere: [`pip install viresclient`](https://viresclient.readthedocs.io/en/latest/installation.html) (Preloaded in VRE - start at [the introduction notebook](https://swarm-vre.readthedocs.io/en/latest/Swarm_notebooks/02a__Intro-Swarm-viresclient.html)) ```python from viresclient import SwarmRequest ds = ( SwarmRequest() .set_collection("SW_OPER_MAGA_LR_1B") .set_products(["B_NEC"]) .get_between("2016-01-01", "2016-02-01") .as_xarray() ) ``` (`.as_xarray()` loads the data as an `xarray.Dataset`) (or use [`.as_dataframe()`](https://viresclient.readthedocs.io/en/latest/api.html#viresclient.ReturnedData.as_dataframe) to get a pandas DataFrame) ---- ```python ds ``` ``` <xarray.Dataset> Dimensions: (NEC: 3, Timestamp: 2678400) Coordinates: * Timestamp (Timestamp) datetime64[ns] 2016-01-01 ... 2016-01-31T23:59:59 * NEC (NEC) <U1 'N' 'E' 'C' Data variables: Spacecraft (Timestamp) object 'A' 'A' 'A' 'A' 'A' ... 'A' 'A' 'A' 'A' 'A' B_NEC (Timestamp, NEC) float64 -1.581e+03 -1.049e+04 ... -4.04e+04 Radius (Timestamp) float64 6.834e+06 6.834e+06 ... 6.834e+06 6.834e+06 Latitude (Timestamp) float64 -72.5 -72.56 -72.63 ... -80.63 -80.69 -80.76 Longitude (Timestamp) float64 92.79 92.82 92.85 ... 58.84 58.95 59.06 Attributes: Sources: ['SW_OPER_MAGA_LR_1B_20160101T000000_20160101T235959_050... MagneticModels: [] RangeFilters: [] ``` Learn xarray: https://xarray-contrib.github.io/xarray-tutorial/scipy-tutorial/00_overview.html ---- Newer versions of xarray give an html repr: <iframe src="https://gistpreview.github.io/?00b17f32c3b669ffdb68364d90a87bc4" style="border:0px #ffffff none;" name="myiFrame" scrolling="no" frameborder="1" marginheight="0px" marginwidth="0px" height="600px" width="1000px" allowfullscreen></iframe> --- ### What's happening underneath? <img style="border:none; box-shadow:none;" src="https://i.imgur.com/vmCDPRI.png" width="1000"> --- ### Subsetting and computation? ```python ds = ( SwarmRequest() .set_collection("SW_OPER_MAGA_LR_1B") .set_products( measurements=["B_NEC"], auxiliaries=["QDLat", "QDLon", "MLT"], # models=["IGRF"], # Computed on demand residuals=True, sampling_step="PT10S", ) .set_range_filter("Flags_B", 0, 1) .get_between("2016-01-01", "2016-02-01") .as_xarray() ) ``` ---- #### Apply your own analysis directly using the Python ecosystem ```python ds.plot.scatter(x="QDLat", y="B_NEC_res_IGRF", col="NEC", hue="SunZenithAngle", cmap="viridis_r", s=0.1) ``` > Residuals to IGRF: Magnetic field perturbations due mainly to auroral oval ![](https://i.imgur.com/od7GBuF.png) http://xarray.pydata.org/en/stable/plotting.html --- ### Okay, what data can I access? https://viresclient.readthedocs.io/en/latest/available_parameters.html ![](https://i.imgur.com/MRN1LFh.png) <!-- | Collection full name | Collection type | Description | | -------------------- | --------------- | ----------- | | SW_OPER_MAGx_LR_1B | MAG | Magnetic field (1Hz) from VFM and ASM | | SW_OPER_MAGx_HR_1B | MAG_HR | Magnetic field (50Hz) from VFM | | SW_OPER_EFIx_LP_1B | EFI | Electric field instrument (Langmuir probe measurements at 2Hz) | | SW_OPER_IPDxIRR_2F | IPD | Ionospheric plasma characteristics (derived quantities at 1Hz) | | SW_OPER_TECxTMS_2F | TEC | Total electron content | | SW_OPER_FACxTMS_2F | FAC | Field-aligned currents (single satellite) | | SW_OPER_FAC_TMS_2F | FAC | Field-aligned currents (dual-satellite A-C) | | SW_OPER_EEFxTMS_2F | EEF | Equatorial electric field | | SW_OPER_IBIxTMS_2F | IBI | Ionospheric bubble index | --> ---- #### New auroral electrojet and boundary products ![](https://i.imgur.com/k6JQ915.png) ---- #### Ground observatories (Swarm AUX_OBS) ![](https://i.imgur.com/U4WeOKB.png) ---- #### Geomagnetic field models ![](https://i.imgur.com/JjU80vJ.png) --- ### Improving accessibility of Swarm > :zzz: [Official documentation of products ![](https://i.imgur.com/7XiXDJS.png)](https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/data-handbook/level-2-product-definitions) > :+1: [Notebook guides to interact with products ![](https://i.imgur.com/wwLpWsy.png)](https://swarm-vre.readthedocs.io/en/latest/notebooks_preface.html) ---- #### Swarm_notebooks - View and give feedback on [Swarm-VRE docs](https://swarm-vre.readthedocs.io/en/latest/notebooks_preface.html) - Interact with them on VRE - Load them from the Launcher in VRE - .. or from links in the docs <table><tr> <td> <img style="border:none; box-shadow:none;" src="https://i.imgur.com/LSE6tu6.png" width="250"> </td> <td> <img style="border:none; box-shadow:none" src="https://i.imgur.com/R0qQmr1.png" width="300"> </td> </tr></table> --- ### Architecture of VRE concept <img style="border:none; box-shadow:none;" src="https://i.imgur.com/UmNyOQQ.png" width="800"> (the simple picture!) ---- <img style="border:none; box-shadow:none;" src="https://i.imgur.com/I4DaeSC.png" width="800"> --- ### Future development - Better notebooks: - Recipes closer to science applications - Working together with data from other sources (e.g. [hapiclient](http://hapi-server.org/servers/#server=CDAWeb&dataset=OMNI_HRO2_1MIN&parameters=BY_GSM,BZ_GSM&start=2000-01-01T00:00:00Z&stop=2000-02-01T00:00:00Z&return=script&format=python)) - Easier to contribute to - New datasets from Swarm (e.g. GVO - geomagnetic virtual observatories) - *Quicklook* service with companion notebooks - *Dashboards* ([example](https://vre.vires.services/user-redirect/lab/tree/shared/Swarm_notebooks/dashboards/0000_concept_demo.ipynb)) based on notebooks - More functionality in `viresclient` + opportunities for related *Swarm* packages - More integration with geospace Python ecosystem --- ### Talk with me: give feedback & get help Contact info & open office hours: https://smithara.github.io/ I am available for any discussions and training, email me: ashley.smith@ed.ac.uk ### Future webinars & discussion I will be improving mechanisms for discussion & collaboration We should have regular future meetings on specific scientific topics --- ### Further reading - Swarm-VRE guide https://swarm-vre.readthedocs.io - Magnetic Earth - intro to geomagnetism https://magneticearth.org - Reproducable & collaborative data science (The Turing Way) https://the-turing-way.netlify.app - Collection of open geoscience software https://github.com/softwareunderground/awesome-open-geoscience - Python in heliophysics http://heliopython.org/ - Reproducability in space sciences (Resen / InGeo project) https://ingeo.datatransport.org/home/resen <!-- # magneticearth.org <iframe width="100%" height=1000 src="https://magneticearth.org"></iframe> -->
{"metaMigratedAt":"2023-06-15T12:27:31.117Z","metaMigratedFrom":"YAML","title":"VRE Webinar Slides","breaks":true,"description":"View the slide with \"Slide Mode\".","slideOptions":"{\"theme\":\"white\",\"transition\":\"slide\"}","contributors":"[{\"id\":\"4ae46272-96af-4d6d-82be-1d62ff7e69da\",\"add\":35562,\"del\":28533}]"}
    1200 views
   owned this note