--- title: DIP Lab 4 tags: DIP --- # DIP Lab 4 105042015 沈冠妤 外語20 ### 1. Proj05-01 – Noise Generators (20%) * **Explanation:** (a) Implement a Gaussian noise to an image. You must be able to specify the noise mean and variance. (b) Implement salt-and-pepper noise to an image. You must be able to specify the probabilities of both salt and pepper. * **Result:** <img src="https://i.imgur.com/IRaaqak.png" height="50%" width="50%"/> <img src="https://i.imgur.com/c9G9RsO.png" height="50%" width="50%"/> (above: Gaussian noise, mean=0.2, variance=0.01) <img src="https://i.imgur.com/miqtnCC.png" height="50%" width="50%"/> (above: Salt&Pepper noise, ps=0.3, pp=0.1) --- ### 2. Proj05-03 – Periodic Noise Reduction Using a Notch Filter (40%) * **Explanation:** (a) Implement sinusoidal noise. (b) Add sinusoidal noise to image. (c) Display the spectrum of the image. (d) Notch-filter the image. * **Result:** <img src="https://i.imgur.com/mHLedgp.png" height="50%" width="50%"/> <img src="https://i.imgur.com/ZcJMbyQ.png" height="50%" width="50%"/> <img src="https://i.imgur.com/i9LvpsL.png" height="50%" width="50%"/> <img src="https://i.imgur.com/F7Boalz.png" height="50%" width="50%"/> <img src="https://i.imgur.com/qN1DIt3.png" height="50%" width="50%"/> <img src="https://i.imgur.com/jDIDve6.png" height="50%" width="50%"/> --- ### 3. Proj05-04 – Parametric Wiener Filter (40%) * **Explanation:** (a) Implement a linear motion blurring filter. (b) Blur image using a=0.1, b=0.1, T=1. (c) Add Gaussian noise of 0 mean and variance of 10 pixels to the blurred image. (d) Restore the image using the Wiener filter. * **Result:** <img src="https://i.imgur.com/hsetV0y.png" height="50%" width="50%"/> <img src="https://i.imgur.com/CNjPAqx.png" height="50%" width="50%"/> <img src="https://i.imgur.com/eP0USjK.png" height="50%" width="50%"/> <img src="https://i.imgur.com/0r0QDnb.png" height="50%" width="50%"/> <img src="https://i.imgur.com/oRli2Dn.pngg" height="50%" width="50%"/> <img src="https://i.imgur.com/D9tRBV1.png" height="50%" width="50%"/> <img src="https://i.imgur.com/dQsUFR9.png" height="60%" width="60%"/> (above: spectrum of linear motion blur filter) * **Comparison:** In Weiner filter debluring, k=0.01 has the best deblur result among k=[0.00025, 0.001, 0.01]. Since: noise_var / var(img(:)) = 0.0098 k=0.01 is the closest to 0.0098, hence k=0.01 has the best result.