# 解一元二次方程式 ### 讓等式右邊為0 * ### 範例一: \begin{align} (x-2)(x-4) &= -3(x-2) & \text{(右邊都丟到左邊)}\\ \\ (x-2)(x-4)+3(x-2) &= 0 & \text{(同項合併)}\\ \\ (x-2)(x-4+3) &=0 & \text{(整理)}\\ \\ (x-2)(x-1) &=0 & \text{(整理)}\\ \\ x&=2\text{, }1 & \text{(得解)}\\ \\ \end{align} * ### 範例二: \begin{align*} (x-3)(x+2) &= -4 & \text{(右邊丟到左邊)}\\ \\ x^2 - x - 2 &= 0 & \text{(整理)}\\ \\ (x-2)(x+1) &= 0& \text{(整理)}\\ \\ x &= 2 \text{, }-1& \text{(得解)} \end{align*} --- ### 最高次項$(x^2)$為負號,左右同乘以$-1$(拿掉負號) * ### 範例: \begin{align*} -x^2 +x + 5 &= -1& \text{($x^2$為負,左右同乘以$-1$)}\\ \\ x^2 -x -5 &= 1 & \text{(讓右邊變成0)}\\ \\ x^2 -x -6&=0 & \text{(整理)}\\ \\ (x-3)(x+2) &= 0 & \text{(整理)}\\ \\ x &= 3\text{, }-2& \text{(得解)} \end{align*} --- ### 遇到有分數(或小數),先同處理(同乘以最小公倍數) * ### 範例: \begin{align*} \cfrac{1}{2}x^2 + \cfrac{1}{6}x - \cfrac{1}{3} &= 0 & \text{(同乘以 $[2, 3, 6] = 6$)}\\ \\ 3x^2 + x -2 &=0\\ \\ (3x-2)(x+1) &=0\\ \\ x &= \frac{2}{3}\text{, }-1 \end{align*} --- ## 解題順序 ### 處理順序應為: \begin{align} 處理分數(小數)→ 右邊處理為0 → 讓最高次項為正 \end{align} ### 處理後的解題順序: \begin{align*} 題目規定 → 提出公因式 → 十字交乘 → 配方法 → 公式解 \end{align*} --- ## 練習題 1. $-(x-2)(x+3) = -3(x-2)(x-1)$ 2. $11 = x^2 - 4x + 1$ 3. $2 = 0.1x^2$ 4. $\cfrac{1}{3}x^2 -x - 18 = 0$ 5. $-\cfrac{1}{2}x^2 = -\cfrac{3}{2}x -4$ \begin{equation} z = \underbrace{x}_\text{test} + y \end{equation} ###### tags: `Junior High`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up