9/13 meeting # some reference https://math.ucr.edu/~res/math205B-2018/Munkres%20-%20Topology.pdf https://www.pdmi.ras.ru/~olegviro/topoman/eng-book-nopfs.pdf https://math.ntnu.edu.tw/~li/Topology/Topology.pdf https://math.uchicago.edu/~may/REU2015/REUPapers/Ran.pdf # Topological space Let $X$ be a set. Let $τ$ be a collection of its subsets such that: (1) the union of any collection of sets that are elements of $τ$ belongs to $τ$; (2) the intersection of any finite collection of sets that are elements of $τ$ belongs to $τ$; (3) the empty set $∅$ and the whole $X$ belong to $τ$. Then • $τ$ is a $topological$ $structure$ or just a $topology$ on $X$; • the pair (X, Ω) is a $topological$ $space$; • elements of $X$ are $points$ of this topological space; • elements of $τ$ are $open$ $sets$ of the topological space $(X, τ)$. The conditions in the definition above are the $axioms$ $of$ $topological$ $structure$. # Algebraic Topology ![](https://hackmd.io/_uploads/r1o11h2C3.png) ![](https://hackmd.io/_uploads/B1Ply2nA3.png) ![](https://hackmd.io/_uploads/BkRZ1hhAn.png) ![](https://hackmd.io/_uploads/r1WHe3n02.png) ![](https://hackmd.io/_uploads/B1x6g32Rh.png) ![](https://hackmd.io/_uploads/S1Kk-3hR3.png) ![](https://hackmd.io/_uploads/S1HHb32R2.png) ![](https://hackmd.io/_uploads/Bkyk03n03.png) ![](https://hackmd.io/_uploads/B13tVyCCn.png) ![](https://hackmd.io/_uploads/ByuqE1CRn.png) ![](https://hackmd.io/_uploads/rJds41CAh.png) ![](https://hackmd.io/_uploads/B1zhVyCCh.png) ![](https://hackmd.io/_uploads/BkWkHkRC2.png) ![](https://hackmd.io/_uploads/BJmbr1CA2.png) ![](https://hackmd.io/_uploads/rJPLslAA3.png) ![](https://hackmd.io/_uploads/rJk3nGCCh.png) ![](https://hackmd.io/_uploads/S1TZpGCAh.png) ![](https://hackmd.io/_uploads/HkmTazA0n.png) ![](https://hackmd.io/_uploads/Sk0TTMAR3.png) ![](https://hackmd.io/_uploads/rkXhRf0Rn.png) ![](https://hackmd.io/_uploads/S1bZy7AAn.png) ![](https://hackmd.io/_uploads/BkXLy7002.png) ![](https://hackmd.io/_uploads/SkAXx7RA2.png) ![](https://hackmd.io/_uploads/HJ0PlmRAh.png) ![](https://hackmd.io/_uploads/HJ5px7R02.png)