# Wiener Process ## Rate of return Let $\{ S_t \}_{t \geq 0}$ be the stock price. E: $\frac{S_{t + \Delta t} - S_t}{S_t} = \mu \delta t + \text{`noise'}$ 'noise' has zero expectation Consider $\{W_t\}_{t \geq 0}$, the Wiener Process 1. $W_0 = 0$ 2. Independent Increment, $\forall t_1 < t_2 \leq t_3 < t_4, W_4 - W_3 \perp W_2 - W_1$ 3. $W_{t+h} - W_t \sim \Nu(0, h)$ Are $W_t$ and $W_s$ independent? No! $$ \begin{align*} \operatorname{Cov}(W_t, W_s) &= E\{(W_t - E[W_t])(W_s - E[W_s])\} \\ &= E\{(W_t - E[W_t - W_0])(W_s - E[W_s - W_0])\} \\ &= E\{(W_t - 0)(W_s - 0)\} \\ &= E\{W_t W_s \} \\ \text{Suppose } t > s, &= E\{(W_t + W_s - W_s)(W_s)\} \\ &= E\{(W_t - W_s)W_s + W^2_s\} \\ &= E[(W_t - W_s)W_s] + E(W_s^2) \\ &= E[W_t - W_s]E[W_s] + E[W^2_s] \\ &= 0 + s \end{align*} $$ Therefore, $\operatorname{Cov}(W_t, W_s) = \min(t, s)$ ## Naive Model $$\begin{align*} \frac{S_{t + \Delta t} - S_t}{S_t} &= \mu \Delta t + \sigma(W_{t + \Delta t} - W_t) \\ S_{t + \Delta t} &= S_t + S_t[\mu \Delta t + \sigma \Delta W_t] \: (\text{Euler's Method}) \\ S_{t + 2\Delta t} &= S_{t + \Delta t} + S_{t + \Delta t}[\mu \Delta t + \sigma \Delta W_{t + \Delta t}] \end{align*} $$ ## Weakness The simulation can goes to negative, which is not possible in real world. There is sample error/estimate error/simulation error. ### Improvment **Idea** Shorten the time period for simulation because the Uncertainty of Wiener Process is depend on the time spend. It is the one way to reduce the error. ## Stochastic Differential Equation $\lim_{\Delta t \rightarrow 0} \frac{S_{t + \Delta t} - S_t}{S_t}$ doesn't exist. $$\begin{align*} \frac{S_{t + \Delta t} - S_t}{S_t} &= \mu \Delta t + \sigma(W_{t + \Delta t} - W_t) \\ d S_t &= S_t [\mu dt + \sigma dW_t] \\ \int^t_0 dS_t &= \int^t_0 S_t [\mu dt + \sigma dW_t] \\ S_t - S_t &= \int^t_0 S_t \mu dt + \int ^t_0 \sigma S_t dW_t \end{align*} $$ ## More General Model ### Black-Scholes Model $$ \begin{align*} \frac{dS_t}{S_t} &= \mu dt + \sigma dW_t \end{align*} $$ ### Ito's process $$ dX_t = \mu(t, X_t) dt + \sigma(t, X_t)dW_t \\ $$ #### Black-Scholes Model in Ito's Form $$ dS_t = (\mu \cdot S_t) dt + (\sigma \cdot S_t)dW_t $$ ### Brownian Motion $$ dX_t = \mu dt + \sigma dW_t \\ X_t - X_0 = \int^t_0 \mu dt + \int^t_0 \sigma dW_t \\ X_t = X_0 + \mu t + \sigma (W_t - W_0) \\ X_t = X_0 + \mu t + \sigma W_t \\ X_t \sim \Nu(X_0 + \mu t, \sigma^2 t) $$ The bound is known, so not very desireable. ## Ito's Process $$ X_t = X_o \int^t_0 \mu(t, X-t)dt + \int^t_0 \sigma(t, X_t)dW_t \\ $$ ### Ito's Isometry Let $y_t = \int^t_0 \sigma(\tau, W_\tau)dW_\tau$ 1. $E[y_t] = 0$ 2. $Var(y_t) = \int^t_0 E[\sigma^2(\tau, W_\tau)]d\tau$ Proof of Property 1 $$ \tilde{y} = \sum^{n - 1}_{i=0} \sigma(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}] \text{ where } t_{i+1} - t_i = \Delta t \\ E[\tilde{y}] = E\{ \sum^{n - 1}_{i=0} \sigma(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}]\} \\ = E\left\{ E\left[\sum^{n - 1}_{i=0} \sigma(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}] \bigg| W_0, W_1, \cdots, W_{n-1}\right] \right\} \\ = E \left\{ \sum^{n-2}_{i=0} \sigma(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}] + E[\sigma(t_{n-1}, X_{t_{n-1}}) (W_{t_n} - W_{t_{n - 1}})] \bigg| \mathcal{F_{t_{n-1}}}) \right\} \\ = E \left\{ \sum^{n-2}_{i=0} \sigma(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}] + E[0 (W_{t_n} - W_{t_{n - 1}} )]\bigg| \mathcal{F_{t_{n-1}}}) \right\} \\ = E \left\{ \sum^{n-2}_{i=0} \sigma(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}] \bigg| \mathcal{F_{t_{n-1}}}) \right\} \\ = 0 \text{(By Induction)} $$ Proof of property 2 $$ E[\tilde{y}^2] = E\left\{ \left(\sum^{n - 1}_{i=0} \sigma(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}] \right) \left( \sum^{n - 1}_{j=0} \sigma(t_j, X_{t_j}) [W_{t_{j+1}} - W_{t_j}] \right) \right\} \\ = E\left\{ \sum_{i \neq j} \sigma(t_i, X_{t_i}) \sigma(t_j, X_{t_j}) [W_{t_{i+1}} - W_{t_i}] [W_{t_{j+1}} - W_{t_j}] + \sum^{n-1}_{i=0}\sigma^2(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}]^2 \right\} $$ Consider $E\left[\sum_{i \neq j} \sigma(t_i, X_{t_i}) \sigma(t_j, X_{t_j}) [W_{t_{i+1}} - W_{t_i}] [W_{t_{j+1}} - W_{t_j}]\right]$ $$ E\left[\sum_{i \neq j} \sigma(t_i, X_{t_i}) \sigma(t_j, X_{t_j}) [W_{t_{i+1}} - W_{t_i}] [W_{t_{j+1}} - W_{t_j}]\right] \\ = \sum_{i \neq j} E\left[\sigma(t_i, X_{t_i}) \sigma(t_j, X_{t_j}) [W_{t_{i+1}} - W_{t_i}] [W_{t_{j+1}} - W_{t_j}]\right] $$ WLOG $i < j$, $$ E\left\{ E\left[ \sigma(t_i, X_{t_i}) \sigma(t_j, X_{t_j}) [W_{t_{i+1}} - W_{t_i}] [W_{t_{j+1}} - W_{t_j}] \bigg| \mathcal{F}_{t_j} \right] \right\} \\ = E\left\{ \sigma(t_i, X_{t_i}) \sigma(t_j, X_{t_j}) [W_{t_{i+1}} - W_{t_i}] E\left[ [W_{t_{j+1}} - W_{t_j}] \bigg| \mathcal{F}_{t_j} \right] \right\} \\ = E\left\{ \sigma(t_i, X_{t_i}) \sigma(t_j, X_{t_j}) [W_{t_{i+1}} - W_{t_i}] (0) \right\} \\ = 0 $$ Consider $E\sum^{n-1}_{i=0}\sigma^2(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}]^2$ $$ E\sum^{n-1}_{i=0}\sigma^2(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}]^2 \\ = \sum^{n-1}_{i=0} E\left\{ \sigma^2(t_i, X_{t_i}) [W_{t_{i+1}} - W_{t_i}]^2 \bigg| \mathcal{F}_{t_i} \right\} \\ = \sum^{n-1}_{i=0} E[ \sigma(t_i, X_{t_i})]^2 \Delta t \rightarrow \int^t_0 E[ \sigma^2(t_i, X_{t_i})] dt $$ ### Vasicek's model Mean returning Model a = speed of returning long term equilibrium b = long term equilibrium $\sigma$ = volatility $$ dV_t = a(b - r_t)d_t + \sigma dW_t, r_0 = r \\ r_t = r_0 + \int^t_0 a(b - r_\tau) d\tau + \int^t_0 \sigma dW_\tau \\ E[r_t] = E\{ r_0 + \int^t_0 a(b - r_\tau) d\tau \} + E[\int^t_0 r dW_\tau] \\ E[r_t] = r_0 + E\{\int^t_0 a(b - r_\tau) d\tau \} \\ E[r_t] = r_0 + \int^t_0\{ab - aE[r_\tau] \}d\tau $$ Let $E[r_t] = f(t)$ $$ \frac{d f(t)}{dt} = 0 + ab - af(t) \\ \frac{d f(t)}{dt} + af(t) = ab \\ $$ Consider, $d(e^{at}f(t)) = f'(t)e^{at} + ae^{at}f(t)$ $$ e^{at}[\frac{d f(t)}{t} + af(t)] = (ab)e^{at} \\ \frac{d(e^{at} f(t))}{dt} = abe^{at} \\ \int d(e^{at} f(t)) = \int abe^{at} dt \\ e^{at} f(t) = be^{at} + C \\ E[r_t] = f(t) = b + Ce^{-at} \\ $$ Solve for C when $t = 0$, $$ r = f(0) = b + Ce^0 \\ C = (r - b) \\ E[r_t] = f(t) = b + (r - b)e^{-at} $$ <!-- $E[x] = \int^\infty_{-\infty} x f_x(x) dx$ Recall the Fubini's principle $\iint\limits_D f(x, y) dx dy = \iint\limits_D f(x,y) dydx$ --> $$ dX_t = t dt + e^t dW_t $$ Euler's Scheme: $X_{t+ \Delta t} = X_t + t\Delta t + e^t [W_{t + \Delta t} - W_t]$ Exact SImulation: $X_{t + \Delta t} = X_t + \int^{t + \Delta t}_t \tau d\tau + \int^{t+\Delta t}_t e^\tau dW_\tau$ $=X_t + \frac{(t + \Delta t)^2 - t^2}{2} + \int^{t + \Delta t}_t e^\tau dW_\tau$ Note that, $\int^{t + \Delta t}_t e^\tau dW_\tau$ is SDE. By Ito's Isometry Let $y = \int^{t + \Delta t}_t e^\tau dW_\tau \sim \mathcal{N}$ ### Ito's Lemma Consider $f(t, X) : [0, \infty) \times \mathbb{R} \rightarrow \mathbb{R} \text{ s.t. } f \in C^{1,2}$ and Ito's process $\{ X_t\}_{t \geq 0}$ $d f(t, X_t) = [\frac{\partial f}{\partial t} + \mu(t, X) \frac{\partial f}{\partial x} +\frac{\sigma^2(t, X)}{2} \frac{\partial^2 f}{\partial X^2}]dt + \sigma(t, X)\frac{\partial f}{\partial X} dW_t$ ### Black-Scholes Model $$ \frac{d S_t}{S_t} = \mu dt + \sigma dW_t \Leftrightarrow dS_t = \mu S_t dt + \sigma S_t dW_t $$ Euler Scheme: $S_{t+ \Delta t} = S_t + \mu S_t \Delta t + \sigma S_t \sqrt{\Delta t} \epsilon$ Consider: $f(t, S) = \log S$ $$ \frac{\partial f}{\partial t} = 0; \frac{\partial f}{\partial S} = \frac{1}{S} ; \frac{\partial^2 f}{\partial S^2} = \frac{-1}{S^2} \\ d \log S = [0 + \mu S (\frac{1}{S}) + \frac{(\sigma S)^2}{2}(\frac{-1}{S^2})]dt + \sigma S (\frac{1}{S}) dW_t \\ d \log S_t = [\mu - \frac{\sigma^2}{2}]dt + \sigma dW_t \\ \log S_t - \log S_0 = \int^T_0 (\mu - \frac{\sigma^2}{2}) dt + \int^T_0 \sigma dW_t \\ S_T = S_0 \exp\{(\mu - \frac{\sigma^2}{2})T + \sigma(W_T - W_0)\} $$ Another example $$ \frac{d S_t}{S_t} = cos(at) dt + \sigma e^{bt} dW_t \\ f(t, S) = log S \\ d log S_t = [ cos(at) - \frac{\sigma^2 e^{2bt}}{2}]dt + \sigma e^{bt} dW_t \\ \int^T_0 d log S_t = \int^T_0 d[ cos(at) - \frac{\sigma^2 e^{2bt}}{2}]dt + \int^T_0 d\sigma e^{bt} dW_t \\ \log S_t - \log S_0 = \frac{1}{a}sin(at) \bigg|^{t=T}_{t=0} + \int^T_0 \sigma e^{bt} dW_t \\ S_T = S_0 \exp\{ \frac{1}{a} sin(aT) - \frac{\sigma^2}{4b}[e^{2bT} - 1] + \int^T_0 \sigma e^{bt} d W_t\} \\ S_T = S_0 \exp\{ \frac{1}{a}sin(aT) - \frac{\sigma^2}{4b}[e^{2bT} - 1] + \sqrt{\frac{\sigma^2}{2b}[e^{2bT} - 1]} \epsilon\}, \epsilon \sim N(0, 1) \\ \int^T_0 \sigma e^{bt} dW_t \sim \mathcal{N}(0, \int^T_0 \sigma^2 e^{2bt} dt) \\ \int^T_0 \sigma e^{bt} dW_t \sim \mathcal{N}(0, \frac{\sigma^2}{2b}[e^{2bT} -1]) \\ $$ Vasicek model. $$ dr_t = a(b - r_t)dt + \sigma dW_t \\ dr_t + ar_t dt = ab dt + rdW_t $$ Consider $f(t,r) = e^{at}r$ $$ \frac{\partial f}{\partial t} = ae^{at} r; \frac{\partial f}{\partial r} = e^{at}; \frac{\partial^2 f}{\partial r^2} = 0 \\ d[e^{at}r] = [ae^{at}r + a(b-r)e^{at} + 0]dt + \sigma e^{at} dW_t \\ d[e^{at}r] = [ abe^{at}]dt + \sigma e^{at} dW_t \\ \int^T_0 d[e^{at}r] = \int^T_0 abe^{at} dt + \int^T_0 \sigma e^{at} dW_t \\ e^{aT}r_T - r_0 = b[e^{aT} - 1] + \int^T_0 \sigma e^{at} W_t \\ r_T = r_0 e^{-aT} + b[1 - e^{-aT}] + \int^T_0 \sigma e^{-a(T-t)} dW_t \\ r_T = r_0 e^{-aT} + b[1 - e^{-aT}] + \sqrt{\frac{\sigma^2}{2a}[1 - e^{-2aT}]} \epsilon, \epsilon \sim N(0,1)\\ \int^T_0 \sigma e^{-a(T-t)} dW_t \sim \mathcal{N}(0, \frac{\sigma^2}{2a}[1 - e^{-2aT}]) \\ var = \int^T_0 \sigma^2 e^{-2a(T-t)}dt \\ = \frac{\sigma^2}{2a}[e^{-2a}(T-t)]^{t = T}_{t = 0} $$ ## Black-Sholes Equation $$ \frac{d S_t}{S_t} = \mu dt + \sigma dW_t $$ $f:$ Option pricing function with payoff $F(S_T)$ eg: Call - $F(S_T) = max(S_T - K, 0)$ Put - $F_(S_T) = max(K - S_T, 0)$ log-contract - $F(S_T) = logS_T$