# Lecture 10: Model deployment, model serving and monitoring Part of mini-course of [Apache Submarine: Design and Implementation of a Machine Learning Platform](https://hackmd.io/@submarine/B17x8LhAH). Day 3, Lecture 10 * 1 hr * Model server * [The Rise of the Model Servers](https://medium.com/@vikati/the-rise-of-the-model-servers-9395522b6c58) * [Serving of ML models in Kubeflow ](https://www.kubeflow.org/docs/components/serving/) * TensorFlow Serving: Flexible, High-Performance ML Serving * Paper: [TensorFlow-Serving: Flexible, High-Performance ML Serving](http://learningsys.org/nips17/assets/papers/paper_1.pdf) * [TensorFlow Serving ](https://www.kubeflow.org/docs/components/serving/tfserving_new/) * Online training, where model being served is updated in-place is not encouraged at Google. * <TODO> * Clipper: A Low-Latency Online Prediction Serving System * [Clipper: A Low-Latency Online Prediction Serving System](https://www.usenix.org/system/files/conference/nsdi17/nsdi17-crankshaw.pdf) * Open source model servers: * [Seldon Serving](https://www.kubeflow.org/docs/components/serving/seldon/) / [SeldonIO/seldon-core](https://github.com/SeldonIO/seldon-core) * [KFServing](https://www.kubeflow.org/docs/components/serving/kfserving/) * References: * [Lecture 12: Model Serving CSE599W: Spring 2018](http://dlsys.cs.washington.edu/pdf/lecture12.pdf) ## Monitoring * purpose: evaluate model performance, compare prediction versus actual. Workflow manager: Azkban, Oozie, Airflow, Luigi * [Open Source Data Pipeline – Luigi vs Azkaban vs Oozie vs Airflow ](https://www.bizety.com/2017/06/05/open-source-data-pipeline-luigi-vs-azkaban-vs-oozie-vs-airflow/) * Oozie * the standard workflow manager for Hadoop. Old but not obsolete. Workflow is specified by Java or XML configuration file. * Airflow * Most popular WM these days. Runs on Hadoop and Kubernetes. * Many more: [LF AI Foundation Interactive Landscape](https://landscape.lfai.foundation/category=workflow&format=card-mode&grouping=category) * Data preprocessing, ML job, model serving ## Benchmarks * [Powering AI: The explosion of new AI hardware accelerators](https://bereadycontenthub.com/beready/psg/art/powering-ai-the-explosion-of-new-ai-hardware-accelerators/) * [MLPerf](https://mlperf.org/) * EEMBC Adasmark benchmarking framework * DAWNBench * [DAWNBench: An End-to-End Deep Learning Benchmark and Competition](https://dawn.cs.stanford.edu/benchmark/papers/nips17-dawnbench.pdf) * [Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark](https://cs.stanford.edu/~matei/papers/2019/sigops_osr_dawnbench_analysis.pdf) ###### tags: `2019-minicourse-submarine` `Machine Learning`