# 特徵擷取網路架構 ![](https://i.imgur.com/7tbER6i.jpg) 先固定encoder,train discriminator和classsifer,然後再train encoder,藉由min||v1-v2||,再back回encoder更新參數 資料夾:先放人,再放速度 ------------------------------------------- ![](https://i.imgur.com/FEiQZJE.jpg) * 先train discriminator和action classifier,後再train encoder和classifier * encoder出來的會是vector,上半 * ------------------------------------------- categorical_crossentropy + mse[1,0.05] ![](https://i.imgur.com/nqKE8vn.png) categorical_crossentropy + kullback_leibler_divergence[1,0.05] ![](https://i.imgur.com/CtV5rX0.png) categorical_crossentropy + mse[1,0.003] ![](https://i.imgur.com/LirIIeQ.png) origin+offset latent_dim=200 ![](https://i.imgur.com/c3gOGXH.png)