# 特徵擷取網路架構  先固定encoder,train discriminator和classsifer,然後再train encoder,藉由min||v1-v2||,再back回encoder更新參數 資料夾:先放人,再放速度 -------------------------------------------  * 先train discriminator和action classifier,後再train encoder和classifier * encoder出來的會是vector,上半 * ------------------------------------------- categorical_crossentropy + mse[1,0.05]  categorical_crossentropy + kullback_leibler_divergence[1,0.05]  categorical_crossentropy + mse[1,0.003]  origin+offset latent_dim=200 
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up