# Conditional Probability ## Define $P(A|B) = \frac{P(A \cap B)}{P(B)}$ - $P(A)$ the **prior** probability of A - $(A|B)$ the **posterior** probability of A ## Bayes' rule & the law of total probability $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$ $P(A_1,A_2,..A_n) =P(A_1)P(A_2|A_1)...P(A_n|A_1,..,A_{n-1})$ ### Bayes' rule $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ ### Law of total probability $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$ subject: $A_1,A_2,...,A_n$ is a partition of the sample space. ### Independence of two events Event A & B are independent if $P(A \cap B) = P(A)P(B)$