# 機率CH4 - Distribution Functions and Discrete Random Variables # <font color="red">Use Checkbox to check whether I've read or not</font> ## EX4.6 - [x] read 區間長度固定 > 使用平移 > 寬度就會和機率大小掛鉤 --- ## Distribution Function ## TH4.2.1 - [x] read  ## TH4.2.2 - [x] read 這裡會用到機率函數的連續性 Tn會包含其他Ti的聯集  ## TH4.2.3 - [x] read Tn隨便跑的情況下,可能最終跑到集合之外  ## TH4.2.4 右連續 - [ ] read 找一個遞減的seq Ti,這個seq要有極限,且這個極限值會等於函數值 <u>seq的例子:</u> ## Th4.2.5 左極限 - [ ] read 從負無窮大逼近a  ## Summary4.2 - [ ] read 不連續點會累積機率 > 因為P(X=t)=P(t+) - P(t-). > no jumps  ## Remark4.1 - [ ] read  --- ## Discrete Random Variables ## Definition4.3.1 - [ ] read  ## Definition4.3.2 probability mass function - [ ] read   ## Ex4.12 - [ ] read Discrete Random Variables的題目問法:   --- ## Expectations of Discrete Random Variables ## Definition4.4.1 期望值 - [ ] read 很像平均數,但在這裡叫他期望值 絕對收斂(加上絕對值之後,是否依舊收斂)那邊,這本書跟其他本書的看法不太一樣   ## Remark4.4.1 - [ ] read  ## Remark4.4.2 更廣義的期望值定義 - [ ] read 也就是說,這本書的定義較狹隘  ## Ex4.4.1.9 - [ ] read 分佈相同不代表結果相同  大家的分布都一樣,最大的機率就是n+1分之一  ## Ex - Pólya’s Urn Model 1 - [ ] read 兩種代幣放在桶子內,隨機拿一個,觀察顏色,之後放回去,不旦放回去,還多放了一些進去 Xn代表前n次抽出白色代幣的個數 這裡用歸納法來證明 1. 證明X1對的 2. 假設Xk對 3. 證明Xk+1可以回到敘述 - 集合關係(Xn包含Xn+1) - 導成條件機率 - 討論第n+1次抽取的顏色情形(抽藍(白數量k)、抽白(白數量k-1))       ## Ex - Pólya’s Urn Model 2 - [ ] read     ## Th4.4.1 - [ ] read  ## Th4.4.2 Law of the Unconscious Statistician - [ ] read  pf: (這裡g_inverse不是反函數的意思)    ## Col4.4.2 - [ ] read   ## Variances and Moments of Discrete Random Variables ## Def4.5.1 標準差、變異數 - [ ] read  ## Th4.5.1 - [ ] read  ## Th4.5.2 - [ ] read  ## Th4.5.3 - [ ] read  ## Ex4.5.1 Moment - [ ] read  ## Remark4.5.1 - [ ] read  ## Standardized Random Variables ## Th4.6.1 - [ ] read 
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up