--- tags: Math, AMSIT, Homework title: AMSIT, Homework author: Vo Hoang Anh - SPyofgame license: Private Use --- $$ \begin{array}{c} \Huge \texttt{Applied Mathematics and Statistics}\\ \Huge \texttt{for Information Technology}\\ \Huge \textbf{Quiz Week 2}\\ \end{array} $$ --- --- --- $$ \begin{array}{c} \textbf{Name: } \texttt{Võ Hoàng Anh}&&&&&&&&&&&&& \textbf{Course: } \texttt{MTH00051-22CLC04}\\ \textbf{Student-ID: } \texttt{22127022}&&&&&&&&&&&&& \textbf{Semester: } \texttt{2024-III}\\ \end{array} $$ If the PDF file has $\texttt{errors}$, use this $\texttt{hackmd link}$: https://hackmd.io/@spyofgame/quiz-2 The solutions are $\texttt{verified}$ with my own $\texttt{C++ solver}$: https://ideone.com/GuQZHl --- --- --- ## Summary #### Bài 2.g :::danger $$ \begin{array}{lll} \mathbf{G} = \left[ \begin{array}{r} 1 & -1 & 2\\ 1 & 0 & -1\\ -1 & 1 & 2\\ 0 & 1 & 1\\ \end{array} \right]\\ \end{array} $$ ::: :::success Dễ tính được $(u_1, u_2, u_3)$ có giá trị như sau $\begin{cases}\begin{array}{llll} &u_1 &=& ( 1, 1,-1, 0)\\ &u_2 &=& (-1, 0, 1, 1)\\ &u_3 &=& ( 2, -1, 2, 2)\\ \end{array}\end{cases}$ Hệ trực giao $\{v_1, v_2, v_3\}$ được tính như sau $\begin{cases}\begin{array}{llll} &v_1 &= u_1 &= (1, 1, -1, 0) \\ &v_2 &= u_2 - \large\frac{\langle u_2,v_1\rangle}{||v_1||^2}v_1 &= \left(-\frac{1}{3}, \frac{2}{3}, \frac{1}{3}, 1\right) \\ &v_3 &= u_3 - \large\frac{\langle u_3,v_1\rangle}{||v_1||^2}v_1 - \large\frac{\langle u_3,v_2\rangle}{||v_2||^2}v_2 &= \left(\frac{12}{5}, -\frac{4}{5}, \frac{6}{5}, \frac{4}{5}\right) \\ \end{array}\end{cases}$ Hệ trực chuẩn $\{q_1, q_2, q_3\}$ được tính theo $q_k = \frac{1}{||v_k||}v_k$ hay $\begin{cases}\begin{array}{llll} &q_1 &= \frac{1}{||v_1||}v_1 &= \large\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0\right) \\ &q_2 &= \frac{1}{||v_2||}v_2 &= \large\left(-\frac{1}{\sqrt{15}}, \frac{2}{\sqrt{15}}, \frac{1}{\sqrt{15}}, \frac{\sqrt{15}}{5}\right) \\ &q_3 &= \frac{1}{||v_3||}v_3 &= \large\left(\frac{\sqrt{15}}{5}, -\frac{1}{\sqrt{15}}, \frac{2}{\sqrt{15}}, \frac{1}{\sqrt{15}}\right) \\ \end{array}\end{cases}$ $\Rightarrow \mathbf{Q} = \frac{1}{\sqrt{15}} \cdot \left[ \begin{array}{ccc} \sqrt{5} & 1 & 3\\ \sqrt{5} & 2 & -1\\ -\sqrt{5} & 1 & 2\\ 0 & 3 & 1\\ \end{array} \right]$ Mà $\begin{cases} \langle q_1, u_1 \rangle = \sqrt{3}\\ \langle q_1, u_2 \rangle = -\frac{2\sqrt{3}}{3}\\ \langle q_1, u_3 \rangle = -\frac{1}{\sqrt{3}}\\ \langle q_2, u_2 \rangle = \frac{\sqrt{15}}{3}\\ \langle q_2, u_3 \rangle = \frac{\sqrt{15}}{15}\\ \langle q_3, u_3 \rangle = \frac{4\sqrt{15}}{5}\\ \end{cases} \Rightarrow \mathbf{R} = \left[ \begin{array}{rrr} \sqrt{3} & -\frac{2\sqrt{3}}{3} & -\frac{1}{\sqrt{3}}\\ 0 & \frac{\sqrt{15}}{3} & \frac{\sqrt{15}}{15}\\ 0 & 0 & \frac{4\sqrt{15}}{5}\\ \end{array} \right]$ ::: :::info $$\mathbf{Q} = \frac{1}{\sqrt{15}} \cdot \left[ \begin{array}{ccc} \sqrt{5} & 1 & 3\\ \sqrt{5} & 2 & -1\\ -\sqrt{5} & 1 & 2\\ 0 & 3 & 1\\ \end{array} \right]$$ $$\mathbf{R} = \left[ \begin{array}{rrr} \sqrt{3} & -\frac{2\sqrt{3}}{3} & -\frac{1}{\sqrt{3}}\\ 0 & \frac{\sqrt{15}}{3} & \frac{\sqrt{15}}{15}\\ 0 & 0 & \frac{4\sqrt{15}}{5}\\ \end{array} \right]$$ ::: ---