# Groups [ch.2] ## 2.1. Introduction to Groups - **Definition 2.3: Permutation**  Note: A permutation is defined as bijective. ## 2.2. Abstract Groups - **Definition 2.6: Groups**   - **Proposition 2.9: Basic Properties of Groups**  - **Proposition 2.10: Cancellation Rule for Groups**  - **Definition 2.11: Order, Cardinality of a Group**  - **Definition 2.12**  - **Proposition 2.13**  ## 2.3. Interesting Examples of Groups - **Definition 2.17: cyclic groups**  - **Examples 2.19: Permutation Groups**  - **Remark 2.20**  - **Examples 2.20**  - **Examples 2.21** ## 2.4. Group Homomorphisms - **Definition 2.24: Group Homomorphisms**  - **Proposition 2.25**  - **Example 2.29: Determinant Map**  - **Definition 2.30: Group Isomorphisms**    ## 2.5. Subgroups, Cosets, and Lagrange’s Theorem - **Definition 2.34: Subgroups**   - **Definition 2.41: Kernel**  - **Proposition 2.44**  - **Definition: 2.45: Coset**  - **Proposition 2.47**  - **Theorem 2.48: Lagrange’s Theorem**  - **Theorem 2.52**  - **Theorem 2.53: Sylow’s Theorem**  ## 2.6. Products of Groups - **Definition: 2.54: Products of Groups**  - **Example 2.55**  - **Theorem 2.56: Structure Theorem for Finite Abelian Groups**  Note: check section 11.9.1 for more details - **Example 2.57: Projections and Inclusions**  Note: check textbooks for other examples in this chapter
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up