# Fields [ch8.] ## 8.1. Algebraic Numbers and Transcendental Numbers - **Definition 8.1: Algebraic, Transcendental Numbers** ![Screenshot 2024-11-25 at 6.39.34 PM](https://hackmd.io/_uploads/H1neL6WQkg.png) ![Screenshot 2024-11-27 at 10.16.38 AM](https://hackmd.io/_uploads/H1D-QgEmkl.png) ![Screenshot 2024-11-27 at 10.16.16 AM](https://hackmd.io/_uploads/SyZxmlN7kg.png) - **Definition 8.4: Smallest subring and subfield contains $F$ and $\alpha$** ![Screenshot 2024-11-27 at 10.14.19 AM](https://hackmd.io/_uploads/Hy2_fg4Xyg.png) - **Theorem 8.5** ![Screenshot 2024-11-27 at 10.13.14 AM](https://hackmd.io/_uploads/BygBGe4myl.png) - **Proposition 8.6** ![Screenshot 2024-11-27 at 10.18.25 AM](https://hackmd.io/_uploads/SJpuQeVX1g.png) ![Screenshot 2024-11-27 at 10.19.05 AM](https://hackmd.io/_uploads/BJK57gVX1e.png) Note: - $f(x)$ should be the minimal polynomial of $\alpha$. - [How to find a minimal polynomial of $\alpha$](https://www.youtube.com/watch?v=kFjOqReUHJo) ## 8.2. Polynomial Roots and Multiplicative Subgroups - **Theorem 8.8** ![Screenshot 2024-11-27 at 10.21.36 AM](https://hackmd.io/_uploads/Hk6VNxEXkl.png) ![Screenshot 2024-11-27 at 10.22.19 AM](https://hackmd.io/_uploads/HJiUExNQ1g.png) - **Corollary 8.10** ![Screenshot 2024-11-27 at 10.22.35 AM](https://hackmd.io/_uploads/r1w_NxN71g.png) - **Lemma 8.11** ![Screenshot 2024-11-27 at 10.23.12 AM](https://hackmd.io/_uploads/By_c4gEX1x.png) ![Screenshot 2024-11-27 at 10.24.01 AM](https://hackmd.io/_uploads/rJGaExVXke.png) ## 8.3. Splitting Fields, Separability, and Irreducibility - **Definition 8.13: Splitting fields** ![Screenshot 2024-11-27 at 10.24.49 AM](https://hackmd.io/_uploads/H1ierlE7yl.png) ![Screenshot 2024-11-27 at 10.26.00 AM](https://hackmd.io/_uploads/rk_EreEmkl.png) - **Theorem 8.17** ![Screenshot 2024-11-27 at 10.26.29 AM](https://hackmd.io/_uploads/B1DKHgNXyg.png) - **Definition 8.18: (Formal) Derivatives** ![Screenshot 2024-11-27 at 10.27.49 AM](https://hackmd.io/_uploads/rJJ6Hx4X1x.png) - **Proposition 8.19** ![Screenshot 2024-11-27 at 10.28.51 AM](https://hackmd.io/_uploads/B1O1Lg4Q1x.png) ![Screenshot 2024-11-27 at 10.30.27 AM](https://hackmd.io/_uploads/ByBSIxEXJl.png) - **Definition 8.21: Separable** ![Screenshot 2024-11-27 at 10.50.10 AM](https://hackmd.io/_uploads/SkylsgE7ke.png) - **Proposition 8.24** ![Screenshot 2024-11-27 at 10.51.14 AM](https://hackmd.io/_uploads/SJGQigV71e.png) ![Screenshot 2024-11-27 at 10.53.14 AM](https://hackmd.io/_uploads/HyT9oeNQ1e.png) ![Screenshot 2024-11-27 at 11.00.16 AM](https://hackmd.io/_uploads/BkQHpxNX1x.png) - **Theorem 8.26** ![Screenshot 2024-11-27 at 11.00.40 AM](https://hackmd.io/_uploads/BJGvTeNQJl.png) Note: (b) means there is a field extension $K/F$, so that $f(x)$ factors seperablely in $K$ ## 8.4. Finite Fields Revisited - **Theorem 8.28** ![Screenshot 2024-11-28 at 2.02.34 PM](https://hackmd.io/_uploads/SyiFYOrmJx.png) Note: - let $F_p = Z/pZ$ has characteristic $P$ - All subfields have the same characteristic as the original field, so $L/F_p$ has the same characteristic. - **Theorem 8.29** ## 8.5. Gauss’s Lemma, Eisenstein’s Irreducibility Criterion, and Cyclotomic Polynomials - **Definition 8.29: Content of $f$** ![Screenshot 2024-11-28 at 2.06.32 PM](https://hackmd.io/_uploads/BJZ_9uBmJe.png) - **Lemma 8.30** ![Screenshot 2024-11-28 at 2.07.33 PM](https://hackmd.io/_uploads/H1Fs9_B7ke.png) - **Theorem 8.31: Gauss's Lemma** ![Screenshot 2024-11-28 at 2.08.51 PM](https://hackmd.io/_uploads/SyIbourXJl.png) - **Corollary 8.32: Irreducibiity via Reduction mod p** ![Screenshot 2024-11-28 at 2.11.39 PM](https://hackmd.io/_uploads/rkqjidH7yx.png) ![Screenshot 2024-11-28 at 2.13.14 PM](https://hackmd.io/_uploads/SkrZ3dB71e.png) ![Screenshot 2024-11-28 at 2.13.22 PM](https://hackmd.io/_uploads/HJHb2_BQ1g.png) - **Corollary 8.35: Eisenstein Irreducibility Criterion** ![Screenshot 2024-11-28 at 2.13.45 PM](https://hackmd.io/_uploads/ryBmndB7Je.png) - **Example 8.36: Cyclotomic Polynomials** ![Screenshot 2024-11-28 at 2.16.21 PM](https://hackmd.io/_uploads/By1ThuS7Jx.png) - **Definition 8.37: nth Cyclotomic Polynomials** ![Screenshot 2024-11-28 at 2.17.49 PM](https://hackmd.io/_uploads/Sk4MadSQJl.png) Note: - For example, we have noted that although the cyclotomic polynomials $\Phi_n(x)$ are irreducible! - Highly used in lattice-based cryptography - **Example 8.38: Some Polynomials that Are Probably Irreducible** ![Screenshot 2024-11-28 at 2.25.29 PM](https://hackmd.io/_uploads/HJge1YSm1g.png) ## 8.6. Ruler and Compass Constructions - Skipped