# Vector Space [ch.4] Important Note: In chapter 10, we let F be a field. ## 4.1. Introduction to Vector Spaces - Nothing here ## 4.2. Vector Spaces and Linear Transformations - **Definition 4.1: Field** ![Screenshot 2024-11-09 at 6.12.58 PM](https://hackmd.io/_uploads/Hyiiwjn-Jx.png) - **Definition 4.3: *F* - vector space** ![Screenshot 2024-11-09 at 6.14.20 PM](https://hackmd.io/_uploads/BJhgOinbkl.png) Note: Only the scalars are in F. - **Proposition 4.4** ![Screenshot 2024-11-09 at 6.14.42 PM](https://hackmd.io/_uploads/r1OMus2bke.png) - **Definition 4.5: *F* - linear transformation** ![Screenshot 2024-11-09 at 6.19.07 PM](https://hackmd.io/_uploads/HyOXYin-Je.png) ## 4.3. Interesting Examples of Vector Spaces ## 4.4. Bases and Dimension - **Natural Basis** ![Screenshot 2024-11-09 at 6.20.55 PM](https://hackmd.io/_uploads/S1U1conbyl.png) - **Definition 4.11: Finite Basis** ![Screenshot 2024-11-09 at 6.24.09 PM](https://hackmd.io/_uploads/rJWLcshW1x.png) - **Definition 4.14: Span of $A$** ![Screenshot 2024-11-09 at 6.33.34 PM](https://hackmd.io/_uploads/SytFnsn-Jl.png) - **Proposition 4.15** ![Screenshot 2024-11-09 at 6.36.02 PM](https://hackmd.io/_uploads/r1cGTjnWJg.png) - **Theorem 4.16** ![Screenshot 2024-11-09 at 6.38.36 PM](https://hackmd.io/_uploads/Hyznps2bJx.png) ![Screenshot 2024-11-09 at 6.39.48 PM](https://hackmd.io/_uploads/Bytl0s3WJg.png) - **Theorem 4.18: Invariance of Dimension** ![Screenshot 2024-11-09 at 6.40.20 PM](https://hackmd.io/_uploads/rk2XRjhZJe.png) - **Definition 4.19: Dimension** ![Screenshot 2024-11-09 at 6.43.15 PM](https://hackmd.io/_uploads/Byt0Cinb1l.png) - **Lemma 4.23: Swap Lemma** ![Screenshot 2024-11-09 at 6.48.33 PM](https://hackmd.io/_uploads/H1M-g33-kg.png) - **Lemma 4.24** ![Screenshot 2024-11-09 at 6.49.18 PM](https://hackmd.io/_uploads/HJNEl2hbkg.png) ## Others 1. Vectors in Basis are linear independent. 2. Vectors in spanning set are not necessarily linear independent. 3. Vector space is a set of vectors. 4. Basis and spanning set can span the vector space, so Basis $\subseteq$ Spanning set.