# Groups [ch.6] ## 6.1. Normal Subgroups and Quotient Groups - **Definition 6.1: Set of Cosets** ![Screenshot 2024-11-24 at 7.36.44 PM](https://hackmd.io/_uploads/B166ZtemJe.png) - **Definition 6.5: g-conjugate, normal subgroup** ![Screenshot 2024-11-24 at 7.39.46 PM](https://hackmd.io/_uploads/B1_tfFlQkx.png) ![Screenshot 2024-11-24 at 7.41.40 PM](https://hackmd.io/_uploads/SkrgXKgmyl.png) Note: - Two subgroups $H_1, H_2\in G$ being conjugate means that $H_1=g^{-1}H_2g$ for some $g \in G$ - **Remark 6.7: Simple Group** ![Screenshot 2024-11-24 at 7.40.55 PM](https://hackmd.io/_uploads/HJBAGtlQke.png) Note: - In mathematics, the word “simple” does not have the usual meaning of uncomplicated or easily understood. Instead, it denotes an object made of only one part; i.e., an object that cannot be decomposed into smaller (simpler) pieces. - **Proposition 6.9** ![Screenshot 2024-11-24 at 7.42.04 PM](https://hackmd.io/_uploads/ryhb7Kemyx.png) - **Proposition 6.10** ![Screenshot 2024-11-24 at 7.43.12 PM](https://hackmd.io/_uploads/Sk7UXYlm1x.png) - **Lemma 6.11** ![Screenshot 2024-11-24 at 7.44.55 PM](https://hackmd.io/_uploads/HJ92QFe7yx.png) - **Theorem 6.12** ![Screenshot 2024-11-24 at 7.45.32 PM](https://hackmd.io/_uploads/HJZkEKg7yl.png) ## 6.2. Groups Acting on Sets - **Definition 6.13: Group Action** ![Screenshot 2024-11-24 at 7.46.30 PM](https://hackmd.io/_uploads/HyImVYeQ1g.png) ![Screenshot 2024-11-24 at 7.47.16 PM](https://hackmd.io/_uploads/rJnBNKgm1x.png) - **Definition 6.15: Orbit & Stabilizer** ![Screenshot 2024-11-24 at 7.50.20 PM](https://hackmd.io/_uploads/HJ1QBYx71e.png) ![Screenshot 2024-11-24 at 7.50.45 PM](https://hackmd.io/_uploads/r1y7HYgQke.png) - **Proposition 6.19** ![Screenshot 2024-11-24 at 7.58.48 PM](https://hackmd.io/_uploads/HkbWwteXkg.png =90%x) Note: - Equivalence Relation have 3 properties, which are **reflexive**, **Symmetric**, and **transitive**. Check proof in the textbook. - **Definition 6.20: Transitive Action** ![Screenshot 2024-11-24 at 7.55.15 PM](https://hackmd.io/_uploads/B1AXIKlQkl.png) ## 6.3. The Orbit-Stabilizer Counting Theorem - **Theorem 6.21: Orbit-Stabilizer Counting Theorem** ![Screenshot 2024-11-24 at 7.54.30 PM](https://hackmd.io/_uploads/HyY-UKem1x.png) - **Definition 6.23: Center of G** ![Screenshot 2024-11-24 at 8.14.49 PM](https://hackmd.io/_uploads/BkRaqFxQ1e.png) - **Theorem 6.25** ![Screenshot 2024-11-24 at 8.15.28 PM](https://hackmd.io/_uploads/BkUzotlQyg.png) - **Corollary 6.26** ![Screenshot 2024-11-24 at 8.16.11 PM](https://hackmd.io/_uploads/BkgfiKlQkl.png) - **Definition 6.27: Centralizer** ![Screenshot 2024-11-24 at 8.16.57 PM](https://hackmd.io/_uploads/BynriKgm1l.png) Note: - **Stabilizer**, **center of G**, **cetralizer**, and **normalizer** are subgroup of G. It seems that things end with "er" are subgroup. - **Definition 6.28: Normalizer** ![Screenshot 2024-11-24 at 8.31.08 PM](https://hackmd.io/_uploads/H1SjRFx71g.png) ## 6.4. Sylow’s Theorem - **Theorem 6.29: The First Part of Sylow’s Theorem** ![Screenshot 2024-11-24 at 8.20.32 PM](https://hackmd.io/_uploads/HJbQhFxX1x.png) - **Lemma 6.30** ![Screenshot 2024-11-24 at 8.21.29 PM](https://hackmd.io/_uploads/HkAH3tl71g.png) - **Definition 6.31: p-Sylow subgroup of G** ![Screenshot 2024-11-24 at 8.22.01 PM](https://hackmd.io/_uploads/SkaAhKl7Jg.png) ![Screenshot 2024-11-24 at 8.23.36 PM](https://hackmd.io/_uploads/r1gJ6Flm1g.png) ![Screenshot 2024-11-24 at 8.23.43 PM](https://hackmd.io/_uploads/Hkl1TFg7yg.png) ![Screenshot 2024-11-24 at 8.23.51 PM](https://hackmd.io/_uploads/Bygy6KlQJg.png) - **Definition 6.35: Sylow’s Theorem** ![Screenshot 2024-11-24 at 8.22.47 PM](https://hackmd.io/_uploads/HkQjhFlQke.png) Note: check example 6.36 for Sylow’s Theore. ## 6.5. Two Counting Lemmas - **Lemma 6.38** ![Screenshot 2024-11-24 at 8.33.47 PM](https://hackmd.io/_uploads/ryDEk9xXJx.png) Note: This lemma counts the number of subgroups of $G$ that conjugates to $H$ - **Lemma 6.39** ![Screenshot 2024-11-24 at 9.19.26 PM](https://hackmd.io/_uploads/S1Nkq5eXkg.png) ## 6.6. Double Cosets and Sylow’s Theorem - **Definition 6.40: Double Coset** ![Screenshot 2024-11-24 at 9.25.22 PM](https://hackmd.io/_uploads/HJ-ws5lQ1e.png) Note: - Only 2 cases - $H_1g_1H_2=H_1g_2H_2$ - $H_1g_1H_2\cap H_1g_2H_2=\emptyset$ - check [wiki](https://en.wikipedia.org/wiki/Double_coset) for more details - **Lemma 6.41** ![Screenshot 2024-11-24 at 9.29.20 PM](https://hackmd.io/_uploads/B12N2ceXyl.png) - **Theorem 6.42: Sylow Theorem** ![Screenshot 2024-11-24 at 9.29.59 PM](https://hackmd.io/_uploads/SJWd25xmyx.png) Note: [better proof of Sylow Theorem by MIT](https://ocw.mit.edu/courses/res-18-011-algebra-i-student-notes-fall-2021/mit18_701f21_lect23.pdf)