# Galois Theory [ch.9] ## 9.1. What Is Galois Theory? - **Definition 9.1: Algebraic Extension** ![Screenshot 2024-11-30 at 9.23.35 PM](https://hackmd.io/_uploads/BkpZ4tOQJg.png) Note: This means $\alpha \in K$ is a root of some polynomials in $F$ ## 9.2. A Quick Review of Polynomials and Field Extensions - check [chapter 5](https://hackmd.io/7rwr4TX5RIepD_D0JsuGnA) and [chapter 8](https://hackmd.io/uJXu_vLfSWKV42LuNi3n3Q). ## 9.3. Fields of Algebraic Numbers - **Theorem 9.3** ![Screenshot 2024-11-30 at 9.28.49 PM](https://hackmd.io/_uploads/Bk-QBKdXyg.png) ![Screenshot 2024-11-30 at 9.34.06 PM](https://hackmd.io/_uploads/BkILLYOXJg.png) Note: - $F[\alpha]$ is the smallest subring of $K$ contains $\alpha$ and $F$. - $F(\alpha)$ is the smallest subfield of $K$ contains $\alpha$ and $F$ - **Corollary 9.5** ![Screenshot 2024-11-30 at 9.34.41 PM](https://hackmd.io/_uploads/ByMdIKuXke.png) Note$^2$: The converse of Corollary 9.5 is false; see Exercise 9.7. - **Theorem 9.6** ![Screenshot 2024-11-30 at 9.35.11 PM](https://hackmd.io/_uploads/HymaIKO7kl.png) - **Definition 9.8: Minimal Polynomial of $\alpha$ over $F$** ![Screenshot 2024-11-30 at 9.43.45 PM](https://hackmd.io/_uploads/Hymqutd7Je.png) ![Screenshot 2024-11-30 at 9.44.07 PM](https://hackmd.io/_uploads/H1oyYt_7yg.png) Note$^4$: We are using the fact that every ideal in F [x] is principal; see Theorem 5.21. - **Theorem 9.10** ![Screenshot 2024-11-30 at 9.45.41 PM](https://hackmd.io/_uploads/B1qWKt_71g.png) ## 9.4. Algebraically Closed Fields - **Definition 9.11: Algebraically Closed** ![Screenshot 2024-11-30 at 9.46.47 PM](https://hackmd.io/_uploads/Bke8YKOm1x.png) Note: For example, the field $\mathbb{C}$ is algebraically closed. - **Proposition 9.12** ![Screenshot 2024-11-30 at 9.48.29 PM](https://hackmd.io/_uploads/Hk6jtKdXyg.png) - **Definition 9.14: Algebraic Closures** ![Screenshot 2024-11-30 at 9.51.10 PM](https://hackmd.io/_uploads/HJ1L9F_QJx.png) - **Theorem 9.15** ![Screenshot 2024-11-30 at 9.51.43 PM](https://hackmd.io/_uploads/ByWOctd71e.png) ![Screenshot 2024-11-30 at 9.52.42 PM](https://hackmd.io/_uploads/HJso5F_7Jl.png) ## 9.5. Automorphisms of Fields - **Example 9.18** ![Screenshot 2024-11-30 at 10.34.16 PM](https://hackmd.io/_uploads/SyS_EcOm1g.png) - **Definition 9.19: Galois Groups** ![Screenshot 2024-11-30 at 10.33.21 PM](https://hackmd.io/_uploads/B1gSNc_71x.png) ![Screenshot 2024-11-30 at 10.37.19 PM](https://hackmd.io/_uploads/HJyXB5_Qyl.png) - **Proposition 9.20** ![Screenshot 2024-11-30 at 10.34.46 PM](https://hackmd.io/_uploads/rk6K45d7Jx.png) ![Screenshot 2024-11-30 at 10.36.10 PM](https://hackmd.io/_uploads/rkjyB5_7kx.png) - **Proposition 9.22** ![Screenshot 2024-11-30 at 10.36.55 PM](https://hackmd.io/_uploads/B1RXScdm1g.png) ## 9.6. Splitting Fields — Part 1 - **Lemma 9.23** ![Screenshot 2024-11-30 at 10.38.58 PM](https://hackmd.io/_uploads/BJbFBqOm1x.png) ![Screenshot 2024-11-30 at 10.39.24 PM](https://hackmd.io/_uploads/BJaqHcu7Jg.png) - **Theorem 9.25** ![Screenshot 2024-11-30 at 10.42.02 PM](https://hackmd.io/_uploads/SyiN8qOXkx.png) - **Corollary 9.26** ![Screenshot 2024-11-30 at 10.43.12 PM](https://hackmd.io/_uploads/S1-q8cu7Jx.png) - **Corollary 9.27** ![Screenshot 2024-11-30 at 10.43.50 PM](https://hackmd.io/_uploads/rJjsLquQye.png) Note: - check textbook to see an example - **9.6.1. The splitting field of $X^4 − 2$ and its automorphisms.** - For the example above, we have to know $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}]=4$, since we need the basis $\{1, 2^{1/4} ,2^{2/4}, 2^{3/4}\}$ with scalars in $\mathbb{Q}$ to form $\mathbb{Q}(\sqrt[4]{2})$ ## 9.7. Splitting Fields — Part 2 - **Theorem 9.28: Galois Extensions** ![Screenshot 2024-11-30 at 11.17.22 PM](https://hackmd.io/_uploads/B1mt0cOXyx.png) - **Lemma 9.31** ![Screenshot 2024-11-30 at 11.17.54 PM](https://hackmd.io/_uploads/r1TjRcuXke.png) ![Screenshot 2024-11-30 at 11.21.31 PM](https://hackmd.io/_uploads/BJlYkodQyg.png) - **Proposition 9.34** ![Screenshot 2024-11-30 at 11.22.51 PM](https://hackmd.io/_uploads/S1MAJouQJx.png) ![Screenshot 2024-11-30 at 11.23.17 PM](https://hackmd.io/_uploads/HkrkeouXyx.png) Note: Since every irreducible polynomial is seperable when $F$ has characteristic 0, a splitting field over $F$ always split a seperable polynomial. (Proposition 8.26(b)) ## 9.8. The Primitive Element Theorem - **Proposition 9.36** ![Screenshot 2024-11-30 at 11.23.55 PM](https://hackmd.io/_uploads/SyRZgou7ye.png) - **Definition 9.37: Seperable Algebraic Extensions** ![Screenshot 2024-11-30 at 11.41.35 PM](https://hackmd.io/_uploads/rkZ4Vo_71g.png) Note: - Since minimal polynomials are irreducible, so if $F$ has characteristic 0, then minimal polynomials are seperable. (Proposition 8.26(b)) - Inparticular,ifFhas characteristic 0, then every algebraic extension is separable - Clarify the the meaning of ["Primitive element"](https://en.wikipedia.org/wiki/Primitive_element_(finite_field)) - **Definition: Normal Algebraic Extensions** ![Screenshot 2024-12-01 at 12.27.25 AM](https://hackmd.io/_uploads/BJr7Jnu7yl.png) Note: This is definition from [wiki](https://en.wikipedia.org/wiki/Normal_extension). Definition 9.60 gives another definition of normal. - **Theorem 9.39: Primitive Element Theorem** ![Screenshot 2024-12-01 at 12.34.20 AM](https://hackmd.io/_uploads/rkc5en_m1g.png) ![Screenshot 2024-12-01 at 12.35.42 AM](https://hackmd.io/_uploads/B1c1-3dmJg.png) Note: [better explaination of Primitive Element Theorem](https://sites.math.washington.edu/~greenber/MATH404-PrimElem.pdf) - **Lemma 9.41** ![Screenshot 2024-12-01 at 12.36.18 AM](https://hackmd.io/_uploads/BJEGb3_7yx.png) ## 9.9. Galois Extensions - **Definition 9.42: Galois Extensions** ![Screenshot 2024-11-30 at 11.27.29 PM](https://hackmd.io/_uploads/B1hg-i_7kx.png) ![Screenshot 2024-12-01 at 12.37.35 AM](https://hackmd.io/_uploads/S1-IZhd7kg.png) Note: - **A Galois extension is an algebraic field extension that is normal and separable.** - Definition 9.42 is quite weird. Just follow the definition from [Wiki](https://en.wikipedia.org/wiki/Galois_extension). - **Proposition 9.45: Galois groups as subgroups of permutation groups** ![Screenshot 2024-12-01 at 12.38.37 AM](https://hackmd.io/_uploads/BkHi-2O7Je.png) - **Definition 9.46: Intermediate Fields** ![Screenshot 2024-12-01 at 12.39.46 AM](https://hackmd.io/_uploads/HJKCbh_71l.png) - **Proposition 9.47** ![Screenshot 2024-12-01 at 12.41.20 AM](https://hackmd.io/_uploads/r1OEGh_Q1x.png) ![Screenshot 2024-12-01 at 12.41.55 AM](https://hackmd.io/_uploads/SJmUMhu7Jg.png) Note: check example 9.50 (The splitting field of X4 − 2: fixed and intermediate fields). - **Theorem 9.51** ![Screenshot 2024-12-01 at 12.42.59 AM](https://hackmd.io/_uploads/H1ncG3OQ1l.png) ## 9.10. The Fundamental Theorem of Galois Theory - **Theorem 9.52: The Fundamental Theorem of Galois Theory** ![Screenshot 2024-12-01 at 12.45.22 AM](https://hackmd.io/_uploads/BJzQXnu7yx.png) Note: check **9.10.1. The Galois Correspondence for $X^4 − 2$.** ## 9.11. Application: The Fundamental Theorem of Algebra - **Proposition 9.53: A Version of the Intermediate Value Theorem** ![Screenshot 2024-12-01 at 12.47.57 AM](https://hackmd.io/_uploads/rJ40m3uXJg.png) ![Screenshot 2024-12-01 at 12.48.13 AM](https://hackmd.io/_uploads/ryEAm2uQ1g.png) - **Theorem 9.54** ![Screenshot 2024-12-01 at 12.49.12 AM](https://hackmd.io/_uploads/B1JfNndXye.png) - **Corollary 9.55: Fundamental Theorem of Algebra** ![Screenshot 2024-12-01 at 12.49.17 AM](https://hackmd.io/_uploads/SJ4GVhuQkl.png) ## 9.12. Galois Theory of Finite Fields - **Definition 9.56: Field of order $p^d$: $\mathbb{F}_{p^d}$** ![Screenshot 2024-12-01 at 1.18.22 AM](https://hackmd.io/_uploads/BJJxs3OXkx.png) - **Theorem 9.57** ![Screenshot 2024-12-01 at 1.20.32 AM](https://hackmd.io/_uploads/BJOvsndXkx.png) ![Screenshot 2024-12-01 at 1.27.51 AM](https://hackmd.io/_uploads/HJvGa2u7Je.png) ## 9.13. A Plethora of Galois Equivalences - **Lemma 9.59** ![Screenshot 2024-12-01 at 1.29.12 AM](https://hackmd.io/_uploads/HkC_phdQJe.png) - **Definition 9.60: Normal Algebraic Extensions** ![Screenshot 2024-12-01 at 1.30.09 AM](https://hackmd.io/_uploads/HktoTh_7yg.png) Note: In this book, only one property - "splits completetly in $K$" is used most of the time. The property - "has no roots in $K$" is seldom mentioned. - **Theorem 9.61** ![Screenshot 2024-12-01 at 1.32.09 AM](https://hackmd.io/_uploads/HkR70humye.png) ![Screenshot 2024-12-01 at 1.32.29 AM](https://hackmd.io/_uploads/BJ0QA2u7Je.png) - **Corollary 9.62** ![Screenshot 2024-12-01 at 1.42.21 AM](https://hackmd.io/_uploads/B10ueaOQye.png) ## 9.14. Cyclotomic Fields and Kummer Fields In this section, we work exclusively with fields of characteristic 0. - **Definition 9.63: Cyclotomic Fields** ![Screenshot 2024-12-01 at 1.51.14 AM](https://hackmd.io/_uploads/rJO9MaO7yl.png) Note: - But be warned that some authors call $K$ a cyclotomic field if $K$ is contained in a splitting field of some $x^n − 1$. We also note that there is no need to use more than one polynomial, since a splitting field of $(x^n − 1)(x^m − 1)$ is the same as a splitting field of $x^{LCM(m,n)} − 1$; see Exercise 9.42 - In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power n. [(wiki)](https://en.wikipedia.org/wiki/Root_of_unity) - **Theorem 9.64** ![Screenshot 2024-12-01 at 9.37.08 PM](https://hackmd.io/_uploads/S1NK_At7yl.png) ![Screenshot 2024-12-01 at 9.40.29 PM](https://hackmd.io/_uploads/HkLUtCtXke.png) Note$^{40}$: As our notation suggests, the values of κ(σ) depends only on σ; it does not depend on the choice of the primitive nth- root of unity ζ. See Exercise 9.43. - **Theorem 9.66: Kronecker's Theorem** ![Screenshot 2024-12-01 at 9.42.14 PM](https://hackmd.io/_uploads/HyohtRYQkg.png) - **Definition 9.67: Kummer Fields over $F$** ![Screenshot 2024-12-01 at 9.43.11 PM](https://hackmd.io/_uploads/ByE-c0F7kl.png) Note: $F^*=F/\{0\}$ - **Theorem 9.68: Kummer Fields** ![Screenshot 2024-12-01 at 9.45.49 PM](https://hackmd.io/_uploads/Skxq5RYm1x.png) Note: proof of (c)(1) ![Screenshot 2024-12-01 at 9.56.53 PM](https://hackmd.io/_uploads/rJBVa0KXJl.png) ## 9.15. Application: Insolubility of Polynomial Equations by Radicals In this section, we work exclusively with fields of characteristic 0. P.S. It will be better to read the book for this section, since I skipped it. - **Definition 9.70: Radical Extension** ![Screenshot 2024-12-01 at 9.58.20 PM](https://hackmd.io/_uploads/HJmtTAYQye.png) Note$^{51}$: "Radical” is an old-fashioned synonym for an nth-root - **Proposition 9.71** ![Screenshot 2024-12-01 at 9.58.49 PM](https://hackmd.io/_uploads/BJ6iaAYQ1g.png) ![Screenshot 2024-12-01 at 10.16.29 PM](https://hackmd.io/_uploads/SyeTbkcQJg.png) - **Definition 9.73** ![Screenshot 2024-12-01 at 10.16.55 PM](https://hackmd.io/_uploads/SJ-gGk97Jx.png) Note: Fields generated by constructible numbers are radical extensions, but they’re very special radical extensions in which only square roots are taken. - **Remark 9.74** ![Screenshot 2024-12-01 at 10.32.21 PM](https://hackmd.io/_uploads/SJRqHy9Xkl.png) ![Screenshot 2024-12-01 at 10.32.36 PM](https://hackmd.io/_uploads/SyS5rJ5m1e.png) - **Definition 9.75: Solvable Groups** ![Screenshot 2024-12-01 at 10.28.52 PM](https://hackmd.io/_uploads/SyasVy5QJx.png) - **Lemma 9.76** ![Screenshot 2024-12-01 at 10.29.53 PM](https://hackmd.io/_uploads/SJKJSy9mkg.png) - **Proposition 9.77** ![Screenshot 2024-12-01 at 10.30.44 PM](https://hackmd.io/_uploads/Byk7SycmJl.png) - **Theorem 9.78** ![Screenshot 2024-12-01 at 10.34.03 PM](https://hackmd.io/_uploads/rkWJUy9myx.png) - **Theorem 0.79** ![Screenshot 2024-12-01 at 10.36.58 PM](https://hackmd.io/_uploads/Hyq5L19Qyl.png) - **Theorem 9.80** ![Screenshot 2024-12-01 at 10.36.28 PM](https://hackmd.io/_uploads/BJbuI1c71e.png) - **Corollary 9.81** ![Screenshot 2024-12-01 at 10.39.54 PM](https://hackmd.io/_uploads/S1JrPkqmJg.png) ![Screenshot 2024-12-01 at 10.40.32 PM](https://hackmd.io/_uploads/S1fvw15X1g.png) - **Lemma 9.83** ![Screenshot 2024-12-01 at 10.40.55 PM](https://hackmd.io/_uploads/HJ_Juy97kg.png) - **Proposition 9.84** ![Screenshot 2024-12-01 at 10.41.01 PM](https://hackmd.io/_uploads/SkuJdyqQye.png) - **Example 9.85: A Degree 5 Polynomial Not Solvable by Radicals** ![Screenshot 2024-12-01 at 10.41.16 PM](https://hackmd.io/_uploads/H1Kkuy5XJx.png) Note: check the book for **9.15.3. Insolubility by Radicals: A Philosophical Digression.** ## 9.16. Linear Independence of Field Automorphisms - **Theorem 9.87** ![Screenshot 2024-12-01 at 10.45.14 PM](https://hackmd.io/_uploads/HkSFu15Q1g.png) - **Corollary 9.89: A Version of Hilbert’s Theorem 90** ![Screenshot 2024-12-01 at 10.45.24 PM](https://hackmd.io/_uploads/ryrYdyqXkg.png)