# Rings [ch.7] - [Rings [ch3.]](https://hackmd.io/5izknlFIQwCh7GHp8_xLUw) - Important Note: In this chapter, every ring is **commutative**. ## 7.1. Irreducible Elements and Unique Factorization Domains - **Definition 7.1: Unit** ![Screenshot 2024-11-15 at 10.05.22 PM](https://hackmd.io/_uploads/ry4LPTVzJg.png) - **Definition 7.2: Irreducible Elements** ![Screenshot 2024-11-30 at 4.17.15 AM](https://hackmd.io/_uploads/Sy2Hm5vm1l.png) Note: - [irreducible and prime element](https://math.stackexchange.com/questions/4128850/intuition-behind-irreducible-elements-and-prime-elements) - In a commutative ring, an element is irreducible if it is neither invertible nor the product of two non-invertible elements, with respect to the multiplication operation on the commutative ring. - **When n is the power of 2, then $x^n+1$ is irreducible in rationals.** [[source]](https://math.stackexchange.com/questions/1897285/how-to-prove-x2k1-is-irreducible-over-the-rational-numbers) - **Definition 7.3: b divides a** ![Screenshot 2024-11-15 at 10.08.22 PM](https://hackmd.io/_uploads/rkXW_pVG1g.png) - **Definition 7.4: Unique Factorization Domain (UFD)** ![Screenshot 2024-11-30 at 4.17.40 AM](https://hackmd.io/_uploads/SyLDmcw7kl.png) - **Theorem 7.7: Polynomial Rings and UFD** ![Screenshot 2024-11-15 at 10.11.04 PM](https://hackmd.io/_uploads/rkEKOpNf1l.png) ## 7.2. Euclidean Domains and Principal Ideal Domains - **Definition 7.8: Principle Ideal Doamin (PID)** ![Screenshot 2024-11-30 at 4.18.07 AM](https://hackmd.io/_uploads/B1xtX5wQ1x.png) - **Definition 7.9: Euclidean Domain** ![Screenshot 2024-11-15 at 11.19.02 PM](https://hackmd.io/_uploads/B1hvu0EfJg.png) Note$^5$: - In all of our examples, the size function will have property (2); but we note that if there is a size function σ that satisfies (1), then it is possible to use σ to create a different size function σ′ satisfying both (1) and (2); see Exercise 7.5. - **Theorem 7.10** ![Screenshot 2024-11-15 at 10.12.21 PM](https://hackmd.io/_uploads/Bk2Aup4Mye.png) - **Corollary 7.11** ![Screenshot 2024-11-15 at 10.13.00 PM](https://hackmd.io/_uploads/S12eY64Gke.png) - **Example 7.12** ![Screenshot 2024-11-15 at 11.23.22 PM](https://hackmd.io/_uploads/HJeFYAEzkl.png) Note: - check example 7.13 to see another important example. - **Proposition: 7.14** ![Screenshot 2024-11-15 at 10.13.40 PM](https://hackmd.io/_uploads/HJrmK6NMJg.png) - **Proposition 7.15** ![Screenshot 2024-11-15 at 10.14.48 PM](https://hackmd.io/_uploads/B1jDYpVGyg.png) - **Theorem 7.16** ![Screenshot 2024-11-15 at 10.15.25 PM](https://hackmd.io/_uploads/r1mKFTVfJl.png) Note: - Every Euclidean domain is **PID**. ## 7.3. Factorization in Principal Ideal Domains - **Proposition 7.17** ![Screenshot 2024-11-15 at 10.16.25 PM](https://hackmd.io/_uploads/HJYnta4M1l.png) - **Corollary 7.18** ![Screenshot 2024-11-15 at 10.16.51 PM](https://hackmd.io/_uploads/BkV15aEzkg.png) - **Theorem 7.19** ![Screenshot 2024-11-15 at 10.16.58 PM](https://hackmd.io/_uploads/rJ1g9aNf1l.png) Note: - Every PID is a UFD, so Euclidean domain is automatically a unique factorization domain. - **Corollary 7.20** ![Screenshot 2024-11-15 at 10.17.03 PM](https://hackmd.io/_uploads/BkXzcTEzye.png) ## 7.4. The Chinese Remainder Theorem - **Theorem 7.22 Chinese Remainder Theorem - Version 1** ![Screenshot 2024-11-15 at 10.18.57 PM](https://hackmd.io/_uploads/BkfqqaVGJe.png) - **Remark 7.24** ![Screenshot 2024-11-15 at 10.19.29 PM](https://hackmd.io/_uploads/SJf556Nz1l.png) - **Theorem 7.25 Chinese Remainder Theorem - Version 2** ![Screenshot 2024-11-15 at 10.19.37 PM](https://hackmd.io/_uploads/SkMccaEGJl.png) - **Lemma 7.26** ![Screenshot 2024-11-15 at 10.19.43 PM](https://hackmd.io/_uploads/S1GcqaEzye.png) ## 7.4.1. An Application of the Chinese Remainder Theorem. - **Definition 7.27: Euler phi function** ![Screenshot 2024-11-30 at 4.18.53 AM](https://hackmd.io/_uploads/Syfn7cvXye.png) Example: - $\phi(1)=1, \phi(2)=1, \phi(3)=2, \phi(4)=2, \phi(5)=4, \phi(6)=2, \phi(7)=6.$ - **Corollary 7.29** ![Screenshot 2024-11-15 at 10.21.55 PM](https://hackmd.io/_uploads/r1RbjTNGkl.png) ## 7.5. Field of Fractions - **Definition 7.30: Field of fractions of R** ![Screenshot 2024-11-30 at 4.19.16 AM](https://hackmd.io/_uploads/Bk46Q9D7Jl.png) - **Definition 7.32: Field of rational funciton over F** ![Screenshot 2024-11-15 at 10.27.32 PM](https://hackmd.io/_uploads/SyRUhT4f1g.png) ## 7.6. Multivariate and Symmetric Polynomials - **Definition 7.33: Multivariate Polynomial Ring** ![Screenshot 2024-11-15 at 10.29.22 PM](https://hackmd.io/_uploads/rJN7p64G1e.png) - **Definition 7.34: The Field if Multivariate Rational Functions** ![Screenshot 2024-11-15 at 10.29.27 PM](https://hackmd.io/_uploads/r14Xp6EG1l.png) - **Definition 7.35: Permuted Polynomial** ![Screenshot 2024-11-15 at 10.29.35 PM](https://hackmd.io/_uploads/HyEXaTVMkg.png) - **Definition 7.36: Symmetric Polynomial** ![Screenshot 2024-11-15 at 10.29.43 PM](https://hackmd.io/_uploads/Hk4QaTEfyl.png) - **Proposition 7.39** ![Screenshot 2024-11-15 at 10.29.48 PM](https://hackmd.io/_uploads/r1E7TpNfJe.png) - **Definition 7.40: The $k$th elementaary symmetric polynomial** ![Screenshot 2024-11-15 at 10.30.02 PM](https://hackmd.io/_uploads/By4X6pVz1e.png) Note: [good examples from wikipedia](https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial) - **Proposition 7.41** ![Screenshot 2024-11-15 at 10.30.11 PM](https://hackmd.io/_uploads/ry4XpaVMkx.png) ![Screenshot 2024-11-15 at 10.30.24 PM](https://hackmd.io/_uploads/SyV7T6VzJx.png) ![Screenshot 2024-11-16 at 12.45.34 AM](https://hackmd.io/_uploads/HJuhnkSM1x.png) - **Theorem 7.44: Ring of Invariants** ![Screenshot 2024-11-15 at 10.33.05 PM](https://hackmd.io/_uploads/Bk-papNMyx.png) ![Screenshot 2024-11-15 at 10.33.32 PM](https://hackmd.io/_uploads/SJWap6EGJx.png) ## Others - Every field is a ring. - $R/I$ is a field if and only if $I$ is a maximal Ideal. - $I$ is a prime ideal if and only if the quotient ring $R/I$ is an integral domain. - $I$ is a maximal ideal if and only if the quotient ring $R/I$ is a field. - Every maximal ideal is a prime ideal, and every prime ideal is a maximal ideal. - Every Euclidean domain is **PID**. - Every field is an integral domain. - Every finite integral domain is a field. - Every PID is a UFD, so Euclidean domain is automatically a unique factorization domain. - [Link to Ring [Chapter3]](https://hackmd.io/5izknlFIQwCh7GHp8_xLUw)