# Discrete Gaussian Distribution ### Gaussian Function: \begin{equation} f(x) = a \cdot \exp\left(-\frac{(x - c)^2}{2\sigma^2}\right) \end{equation} ### Gaussian Measure: - For $a = 1$, we define the **Gaussian measure** in $\mathbb{R}$ as: \begin{equation} \rho_{\sigma, c}(x) = \exp\left(-\frac{(x - c)^2}{2\sigma^2}\right) \end{equation} - Generalized to $\mathbb{R}^n$ using $s = \sqrt{2\pi}\sigma$: \begin{equation} \rho_{s, c}(\mathbf{x}) = \exp\left(-\frac{\pi \|\mathbf{x} - \mathbf{c}\|^2}{s^2}\right) \end{equation} - The total measure over $\mathbb{R}^n$: \begin{equation} \int_{\mathbf{x} \in \mathbb{R}^n} \rho_{s, c}(\mathbf{x}) \, d\mathbf{x} = s^n \end{equation} ### Gaussian PDF (Probability Density Function): \begin{equation} D_{s, c}(\mathbf{x}) = \frac{\rho_{s, c}(\mathbf{x})}{s^n} \end{equation} ### Discrete Gaussian over lattice $L$: - Gaussian measure over lattice $L$: \begin{equation} \rho_{s, c}(L) = \sum_{\mathbf{x} \in L} \rho_{s, c}(\mathbf{x}) \end{equation} - Discretized density function: \begin{equation} D_{s, c}(L) = \frac{\rho_{s, c}(L)}{s^n} \end{equation} - Discrete Gaussian distribution: \begin{equation} D_{L, s, c}(\mathbf{x}) = \frac{D_{s, c}(\mathbf{x})}{D_{s, c}(L)} = \frac{\rho_{s, c}(\mathbf{x})}{\rho_{s, c}(L)} \end{equation}