[toc] # Proof ## 逆反命題 p -> q = ¬q -> ¬p 若 P,則Q = 若非 Q,則非P ex. proof that integer n, if **3n+2 is odd** `(p)` -> **n is odd** `(q)` Assume that n is even (¬q) 3n+2 = 3(2k)+2 = 6k+2 = 2(3k+1), it is even (found ¬p) ## 反證 prove that p is ture find an r such that ¬p -> (r^¬r) is true then p is true, (r ^ ¬r) always false # Set ## Cardinality `|S|` The number of distinct element of S. `∣∅∣ = 0` S is finite if its cardinality is finite; otherwise, S is infinite. Z+, N, Z, Q, and R are infinite. ## Power Set P(S) The set of all subset of S. ∅ and S itself are the member of P(S) `P({a,b}) = {∅, {a}, {b}, {a, b}}` `P(∅) = {∅}` `P({∅}) = {∅, {∅}}` if S has n elements, `|P(S)| = 2^n` ## Cartesian Products AxB = {(a,b) | a∈A ∧ b∈B} AxB != BxA unless A=∅ or B=∅ (so A=B=∅) or A=B. # Binary Relation A binary relation from A to B is a subset of AxB A set of ordered pairs (a, b), where a∈A and b∈B A relation on the set A is a relation from A to A. ## Properties of Relations 全部: n^2 主對角線數: n 左下半數: n(n-1)/2 ### Reflexive: 連號都有 2 ^ (n ^ 2 − n) 2 ^ (非主對角線數) ### Irreflexive: 無連號 2 ^ (n ^ 2 − n) 2 ^ (非主對角線數) ### Symmetric: 如果AB在,BA要在 2 ^ (n(n + 1) / 2) 2 ^ (主對角線數 + 左下半數) ### AntiSymmetric: 2^n * 3^(n(n-1)/2) 如果A,B在且B,A在, 則A=B 2^(主對角線數) * (左下半邊數 * 3) 3指的是:(假設a != b) (a,b) , (b,a) , 無 ### ASymmetric: 3^(n(n-1)/2) AntiSymmetric但是沒有連號 ## Set Operations ### Union A ∪ B ### Intersection A ⋂ B ### Difference A - B, A\B # Function ### injective (one to one) 單映射 ### surjective (on-to) value都有被對映到 ### bijective injective and surjective # 解遞迴關係式 ## 齊次 ex. an = 3(an-1) - 3(an-2) + (an-3), a0 = a1 = 2, a2 = 4 1. Let an = r^n, 解特徵方程 r^n = 3r^(n-1) - 3r^(n-2) + r^(n-3) r^n - 3r^(n-1) + 3r^(n-2) - r^(n-3) = 0 r^3 - 3r^2 + 3r - 1 = 0 r = 1 (三重根) 2. r帶回去,寫出通解,重根的話要填n an = α * 1^n + β * **n** * 1^n + γ * **n^2** * 1^n :::info 三重根 r 通解 (α + β * **n** + γ * **n^2**) * r^n 二重根 r1, r1, r2 通解 (α + β * **n**) * r1^n + γ * r2^n r1, r2, r3 通解 α * r1^n + β * r2^n + γ * r3^n ::: 3. 帶初始值, 解 a0 = 2 = α a1 = 2 = α + β + γ a2 = 4 = α + 2β + 4γ 求得α, β, γ -> an = 2 - n + n^2 ## 非齊次 (先解齊次解) ex. an = 5(an-1) - 6(an-2) + 2^n 1. Let an = r^n, 解特徵方程 (先解齊次解) r^n = 5r^(n-1) - 6r^(n-2) r^n - 5r^(n-1) + 6r^(n-2) = 0 r^2 - 5r + 6 = 0 r = 2 or 3 2. r 帶回去,寫出齊次解 an = α * 2^n + β * 3^n 3. 找特解 (重根的話要填n) Let an = **n** * r2^n nr2^n = 5(n-1)r2^(n-1) - 6(n-2)r2^(n-2) + 2^n 8r = 10r + 4 r = -2 an = -2n2^n 4. 合併 an = α * 2^n + β * 3^n - 2n2^n 3. 帶初始值, 解 求得α = -2, β = 3 -> an = -2 * 2^n + 3 * 3^n - 2n2^n ...