# Week 11 Hot spot analysis ###### tags: `GlobalAnalysisMethods` > 熱區分析的空間統計方法 * For polygon data: 1. Local moran's I index 2. Local Gi* ## Local Moran's I ![](https://i.imgur.com/TNmJkQw.png) ![](https://i.imgur.com/lETHdPU.png) ### 顯著性檢定 ![](https://i.imgur.com/GlrSNqe.png) ### LISA Cluster of similar values: * HH: 自己跟周圍都很高 * LL: 自己跟周圍都很低 --- Cluster of dissimilar values: * LH: 自己低但周圍很高 * HL: 自己高但周圍很低 高於平均或低於平均-->區分冷熱區 Moran's I 得到的值是顯示與鄰居的相似程度 ## 2. Local G > Gi* 計算鄰居是包含自己的 ![](https://i.imgur.com/mRBt0rv.png) ### 顯著性檢定 ![](https://i.imgur.com/ouYV0D8.png) ## R-code 實作 * LISA ```r= # 定義鄰近 tw.nb = poly2nb(TW) # 建立鄰近表 tw.nb.w = nb2listw(tw.nb, zero.policy = T) # 區域空間自相關運算 LISA = localmoran(old, tw.nb.w, zero.policy, alternative = "two.sided") # 區分顏色 diff = old - mean(old) # 看自己和平均比較起來算是H還是L z = LISA[,4] quad = c() quad[diff>0 & z>0] = 1 # HH quad[diff<0 & z>0] = 2 # LL quad[diff>0 & z<0] = 3 # HL quad[diff<0 & z<0] = 4 # LH quad[LISA[,5]>0.05] = 5 # 不顯著,雙尾用0.05比較 # 繪圖 colors = c("red", "blue", "lightpink", "skyblue2", rgb(.95,.95,.95)) plot(TW, border = "grey", col = colors[quad], main = "LISA Map") legend("bottomright", legend = c("HH", "LL", "HL", "LH", "NS"), fill = colors, bty = "n", cex = 0.7, y.intersp = 1, x.intersp = 1) ``` * Gi* ```r= tw.nb = poly2nb(TW) tw.nb.in = include.self(tw.nb) tw.nb.w.in = nb2listw(tw.nb.in) Gi = localG(old, tw.nb.w.in) LG = as.vector(Gi) # 區分顏色 quad = c() quad[LG >= 1.645] = 1 # cluster quad[LG < 1.645] = 2 # non-cluster # 繪圖 colors = c("red", "lightgray") plot(TW, border = "grey", col = colors[quad], main = "Cluster Map") legend("bottomright", c("Cluster","Non-cluster"), fill = colors, bty = "n", cex = 0.7, y.intersp = 1, x.intersp = 1) ```