## 1.0 機器人設計選擇 ### 1.1 底盤 考慮的選項: - 萬向輪驅動(Swerve Drive) - 優點:高靈活性,允許快速重新定位,抗推擠能力強、速度快。 - 缺點:結構更複雜,重量較重,需要進階編程,因為底盤形狀導致的重心 不穩。 Options to consider: - Swerve Drive - Advantages: High flexibility, allows quick repositioning, high resistance to jostling, high speed. - Disadvantages: The structure is more complex, the weight is heavier, and advanced programming is required because the center of gravity is unstable due to the shape of the chassis. - 坦克驅動(Tank Drive)(小白輪) - 優點:速度快,控制及結構簡單,便宜,程式好寫,馬達少。 - 缺點:無法側移,在狹窄空間的機動性較差。 - - Tank Drive (small white wheel) - Advantages: fast speed, simple control and structure, cheap, easy to program, and few motors. - Disadvantages: Unable to move sideways, poor maneuverability in narrow spaces. - 麥輪(Mecanum Drive) - 優點:可以橫向移動,適合狹小空間。 - 缺點:移動速度較慢,耗能較高。 - - Mecanum Drive - Advantages: Can be moved laterally and suitable for small spaces. - Disadvantages: Slow movement speed and high energy consumption. - 最終決定:萬向輪驅動(Swerve Drive) - 同時具備其他兩種底盤的優點,卻又提供最高的靈活性 - 提供最佳的移動靈活性,以便得分和收集Algae。 - 雖然需要更高級的編程,但提供更好的戰略優勢。 - Final decision: Swerve Drive - Offers the best of the other two chassis yet offers the highest flexibility - Provides the best flexibility of movement in order to score and collect Algae. - Although requires more advanced programming, provides better strategic advantages. - 遇到的問題: - 新的底盤(mk4i)因為供應商缺貨及送達延誤以致於無法測試導致的工作delay - Problems encountered: - The new chassis (mk4i) cannot be tested due to supplier shortages and delivery delays. ### 1.2 收集與爪子機構 - 目標: - 高效收集Coral Station之珊瑚(CORAL) 並對準得分。 - 保持穩定的軌跡,以準確放置在 礁石(REEF) 上。 - Target: - Collect Coral Station's corals (CORAL) efficiently and score points accordingly. - Maintain a stable trajectory for accurate placement on the REEF. - 遇到的問題: - 爪子重量不平衡 → 調整馬達位置。 - 收集與爪子對不上,以致於CORAL會被果凍輪彈飛 → 將收集裝置傾斜角度降低。 - 爪子軸心公差導致軸心鬆動,以致於馬達運行時有一段空轉而導致程式控制不精準 → 用雷雕機雕刻軸心對準板緩解鬆動之問題。 - Encountered Issues: - Imbalanced claw weight → Adjust the motor position. - Misalignment between the collection mechanism and the claw, causing the CORAL to be ejected by the intake wheels → Reduce the tilt angle of the collection mechanism. - Claw axle tolerance causing looseness, leading to a delay in motor response and reduced precision in program control → Use a laser-cut alignment plate to mitigate the looseness issue. ### 1.3 爬升機構 - 考慮的選項: - 伸縮升降機構(Telescoping Lift):緊湊、輕量,但較脆弱。 - 電梯式升降機構(Elevator Lift):更穩定,允許更好的終局定位,但結構複雜。 - 機械手臂:靈活、設計簡單、扭矩過大導致的容易斷裂和馬達扭力不足、重心不穩。 - 最終決定:電梯式升降機構(Elevator Lift) - 優點:爬升更穩定,控制更容易,能夠支援不同高度的REEF。 - 缺點:需要額外的重量平衡與更堅固的結構,電梯的材料特殊。 - 遇到的問題: - 電梯的滑軌及滑輪較難取得,需要向國外店家進行購買。 - 因無設計過類似結構,無法理解相關概念,而導致設計困難。 - 實際加工精度無法達到預想中的效果,導致電梯結構不穩定。 - Considered Options: - Telescoping Lift: Compact and lightweight but relatively fragile. - Elevator Lift: More stable, allows better endgame positioning, but structurally complex. - Robotic Arm: Flexible and simple in design, but prone to breakage due to excessive torque, motor torque limitations, and unstable center of gravity. - Final Decision: Elevator Lift - Advantages: More stable climbing, easier control, and supports different heights of the REEF. - Disadvantages: Requires additional weight balancing and a more robust structure; special materials are needed for the elevator. - Encountered Issues: - The elevator’s rails and pulleys are difficult to obtain and must be purchased from international suppliers. - Lack of prior experience with similar structures led to difficulties in understanding the related concepts. - The actual machining precision did not meet expectations, resulting in an unstable elevator structure. ## 2.0 每週進度記錄 ### Week 1(1/13 - 1/19) - 結構組 - 進度: - 討論機台設計 做出第一項裝置 我們將從設計並製作claw機構開始,目的是吸入並處理目標物(如coral和algae)。首先,確定抓取裝置的功能需求,設計吸力與抓取機構,並選擇合適的動力源與控制系統。接著,製作原型並進行初步測試。根據測試結果進行優化,調整吸力和抓取力度,並進行多次測試以確保裝置的穩定性與可靠性。 - 問題: - 果凍倫的距離調整 測試後發現,雖然裝置能夠運行,但需要調整果凍輪之間的距離,以確保其能夠正常運作。這樣的調整有助於改善抓取精度和穩定性,避免因為距離不合適而影響吸力或抓取效果。接下來,我們將根據測試結果進行微調,確保每次操作都能達到預期的效果。 - 解決: - 更改了果凍輪間距 使其精準運行 經過調整果凍輪之間的間距後,裝置能夠順利吸入coral,並達到預期的效果,確保其正常運作。這一調整不僅提高了吸入精度,還改善了整體抓取的穩定性,確保每次操作都能順利完成。除此之外,我們還對下方的設計進行了調整,目的是讓裝置能夠更有效地拾取algae。通過微調抓取機構和吸力設定,我們優化了其對algae的抓取能力,確保無論是coral還是algae,都能夠順利且穩定地被吸入和處理。這些改進將有助於提升裝置的整體性能,並確保在比賽中的高效運行。 - 程式組 - 刷新並設置新的網路機,測試底盤基本運行。 - 研究 Kinematics Swerve 和 PathPlanner。 - 行政組 - 完成場地繪製、募款信件範本製作、參賽人員統計。 - 開始設計客製化商品。 Structural Team - Progress: The team has discussed the robot design and created the first functional mechanism. We began by designing and manufacturing the claw mechanism, which is responsible for intaking and handling target objects (such as coral and algae). First, we identified the functional requirements of the gripping device, designed the suction and gripping mechanism, and selected the appropriate power source and control system. Then, we built a prototype and conducted initial tests. Based on the test results, we optimized the mechanism by adjusting the suction power and gripping force, followed by multiple tests to ensure stability and reliability. - Issues: Compliant wheels distance adjustment After testing, we found that while the mechanism could function, the distance between the compliant wheels needed to be adjusted to ensure proper operation. This adjustment helps improve gripping accuracy and stability, preventing improper spacing from affecting suction or grip performance. Next, we will fine-tune the spacing based on test results to ensure each operation meets the expected performance. - Solution: - Adjusted the compliant wheel spacing for precise operation - After fine-tuning the spacing between the compliant wheels, the mechanism was able to successfully intake coral, achieving the expected results and ensuring smooth operation. - This adjustment improved suction precision and enhanced overall gripping stability, making each operation more reliable. - In addition, we modified the lower section of the design to optimize algae intake. - By fine-tuning the gripping mechanism and suction settings, we enhanced the mechanism’s ability to pick up algae. - These improvements will contribute to the overall performance of the robot, ensuring efficient operation during the competition. - Programming Team - Set up and configured a new network system, tested the chassis’ basic movement. - Studied Kinematics Swerve and PathPlanner to optimize movement and trajectory planning. - Administrative Team - Completed field drawing, fundraising letter templates, and participant statistics. - Started designing custom merchandise. ### Week 2(1/20 - 1/26) - 結構組 - 製作電梯裝置,完成第一、二階段。 - 修正電梯偏移問題,確保軌道穩定運行。 - 程式組 - 確定比賽程式架構,增加 NavX2 陀螺儀支援。 - 研究 PathPlanner,模擬新底盤 MK4i。 - 行政組 - 重新設計隊伍網站,增加照片跑馬燈特效。 - 確認 BOM 表,開始工程筆記製作。 - Mechanical Team: - Built the elevator mechanism, completing phases one and two. - Fixed elevator misalignment issues to ensure stable track operation. - Programming Team: - Finalized the competition code structure and added support for the NavX2 - gyroscope. - Researched PathPlanner and simulated the new MK4i drivetrain. - Administrative Team - Redesigned the team website with a photo carousel effect. - Reviewed the BOM and started working on the engineering notebook. ### Week 3(1/27 - 2/2) - 結構組 - 完成第三階電梯,確保 Claw 能安裝並投擲至 L4。 - 解決 T 形角鐵鎖歪斜問題,改善電梯穩定性。 - 程式組 - 進行底盤程式測試,並修正電梯結構損壞問題。 - PathPlanner 優化完成,改用 PoseEstimator 進行里程計算。 行政組 - 印刷工程筆記,確保所有宣傳與販售品準備完成。 - 籌備比賽流程與機台運送。 - Mechanical Team - Completed the third-stage elevator, ensuring the Claw can be mounted and score at L4. - Fixed misaligned T-shaped angle brackets to improve elevator stability. - Programming Team - Tested the drivetrain code and addressed structural damage in the elevator. - Optimized PathPlanner and switched to PoseEstimator for odometry calculations. - Administrative Team - Printed the engineering notebook, ensuring all promotional and merchandise items are ready. - Prepared competition logistics and robot transportation. ### Week 4(2/3 - 2/9) - 結構組 - 調整電梯鍊條與繩索,提高穩定性。 - 程式組 - 確保 MK4i 自動程式與 PathPlanner 可正常運行。 - 行政組 - 進行比賽測試,記錄機器運行數據。 - Mechanical Team - Adjusted elevator chains and ropes to improve stability. - Programming Team - Ensured MK4i automation and PathPlanner function correctly. - Administrative Team - Conducted competition testing and recorded robot performance data. ### Week 5(2/10 - 2/16) - 結構組 - 安裝與測試抓取機構,確保運作流暢。 - 程式組 - 校正電梯程式參數,提高精度。 - 行政組 - 籌備比賽活動與宣傳內容。 - Mechanical Team - Installed and tested the grabbing mechanism to ensure smooth operation. - Programming Team - Calibrated elevator parameters to improve precision. - Administrative Team - Prepared competition events and promotional materials. ### Week 6(2/17 - 2/23) - 結構組 - 強化機體結構,減少比賽期間的損壞風險。 - 最終檢查與測試,確保所有機構準備就緒。 - 程式組 - 整合感測器數據,優化動態路徑規劃。 - 最終測試與除錯,準備參賽。 - 行政組 - 確保所有行程,檢查比賽流程。 - Mechanical Team - Reinforced the robot structure to reduce the risk of damage during the competition. - Conducted final inspections and tests to ensure all mechanisms are ready. - Programming Team - Integrated sensor data to optimize dynamic path planning. - Performed final testing and debugging to prepare for the competition. - Administrative Team - Finalized all schedules and reviewed the competition process. ## 3.0 程式設計與控制 ### 3.1 Limelight - 用 Limelight 來辨識 AprilTag ,協助 PoseEstimator 來定位機器人的在場地上的位置,以及輔助 Driver 投放 Coral - Use Limelight to detect AprilTags and assist PoseEstimator in determining the robot's position on the field, as well as to aid the driver in placing Coral. ### 3.2 Pathplanner - SwerveDrivePoseEstimator 用於精確定位。 - 用 Pathplanner 來執行自動化程式。 ### 3.3 PID Controller - 採用 PD 控制器: - 調整 kP 直到出現輕微震盪。 - 設定 kD 以微調穩定性。 - 只有在需要時才調整 kD 來減少震盪。 ## 4.0 額外策略 - 人類玩家效率提升:快速、準確地傳遞CORAL以進行放置。 - 動態防禦:根據對手行動即時調整站位。 ## 5.0 材料清單 以下是整理好的 **材料清單(BOM)** 表格: | **品項** | **數量** | |---------------------------------|--------| | 2:1 英吋鋁方管(498.46×4mm) | 1 | | MK4i Swerve Module | 4 | | Basis Plate | 1 | | WCP-0897 | 8 | | Slide Wheel | 4 | | Left Right | 1 | | 13.5in Tubes | 2 | | 16in Tubes | 1 | | 19in Tubes | 1 | | 24in Tubes | 1 | | 25×25 Tubes | 2 | | 25×25 5.16in Tubes | 2 | | 38in Tubes | 2 | | 39in Tubes | 2 | | L Iron | 12 | | 25×25 21in Tubes | 1 | | **電機與傳動系統** | | | Extension_8mm_Neo | 4 | | Neo Plate | 2 | | Neo 馬達 | 2 | | Rev_2106 | 2 | | Rev_2102 | 4 | | Rev_2104 | 2 | | AM-2986 | 6 | | Hex 50mm | 2 | | Elevator Neo Plate 1 | 2 | | AM-4775 18T | 4 | | 2:1in 54mm Tubes | 2 | | Collect Plate | 1 | | 25×25 400mm | 2 | | 25×25 Tubes | 2 | | Hold_Up | 2 | | Hold_Up_1 | 2 | | Shaped Beam | 2 | | Collect Side Plate | 4 | | C Shaped Beam | 2 | | Hold_Down | 2 | | Belt Pulley 42 Tooth | 2 | | AM-2647 | 2 | | Pipe + Adapter | 1 | | Motor Neo 550 | 1 | | Board | 2 | | AM-2986 | 7 | | Hexagonal Shaft | 1 | | Hexagonal Shaft 192mm | 4 | | Compliant Wheels | 6 | | Hexagonal Shaft 114.3mm | 8 | | Hat | 1 | | AM-2568 500EX Hub | 2 | | Hexagonal Shaft 114.3mm | 1 | | A1-18 Intake + Shooter | 1 | | AM-4775 18T 25 Chain 500in Hex Symmetrical | 4 | | A2-19 Intake + Shooter | 2 | | AM-1641 500 Round Collar Clamp | 2 | | WCP-CC2025-03-015 | 2 | | WCP-CC2025-03-015_2 | 2 | | WCP-CC2025-03-017 | 2 | | Hexagonal Shaft 114.3mm | 2 | | AM-2986 FR8ZZ Hex Bearing | 4 | | AM4158 1in Tee Gusset | 4 | | Elevator 3rd Brace | 2 | | Side Corner 45 Deg | 8 | | Elevator Side Aluminum Square Tube | 2 | | **電子與控制系統** | | | PDH | 1 | | BRM | 1 | | RoboRIO | 1 | | Radio | 1 | | Sbark Mas | 6 | | 紅外線感測器 | 1 | | RSL | 1 | | Limelight 2.0 | 1 | | **電源與保險絲** | | | Snapaction Breaker 40A | 8 | | Snapaction Breaker 30A | 6 | | Fuse 10A | 2 | | Fuse 20A | 1 | |木板70.5121.7 | 4 |木板75121.7 |4 m570 螺絲 |8 m5防鬆螺母 |16 木工螺絲 |16 L型角鐵 |8 角鐵 |8 泡棉 |16 M516螺絲| 17 M540螺絲 |23 M570螺絲| 6 M5防鬆螺母 |46 4分之14分之3 六角法蘭螺絲| 6 4分之1*1六角法蘭螺絲| 4 4分之1六角法蘭螺母 |10 --- (備料) | 物品 | 數量 | | -------- | -------- | | 20*20鋁方管-15.5公分 | 2支 | | 20*20鋁方管-60公分 | 1支 | | 2:1英鋁方管-61公分 | 2支 | | 尼龍繩 | 數量 | | 電梯neo六角軸 | 4支 | | 美規25鏈條 | 10公尺 | | 電梯鏈條m2螺絲/螺母| | | 鏈條固定鋁擠料(鑽孔) | 6塊 | | 爪子側板 | 4片 | | 爪子上板 | 2片 | | intake hub(8mm pp板) | 4片 | | 30安培保險絲 | 2支 | | intake board(8mm pp板) | 4片 | | 2:1英鋁方管-66公分 | 2支 | ## 結論 2025 REEFSCAPE 競賽帶來了獨特的挑戰,需要精確的協調、靈活的移動以及最佳化的得分策略。我們的設計選擇優先考慮靈活性、效率和適應性,以確保比賽中發揮最佳表現。